16.如圖,在三棱柱ABC-A1B1C1中,△ACC1≌△B1 CC1,CA⊥C1 A且CA=C1 A=2.
(1)求證:AB1丄CC1
(2)若AB1=2,求四棱錐A-BCC1B1,的體積.

分析 (Ⅰ)連AC1,CB1,證明CC1⊥OA,CC1⊥OB1,推出CC1⊥平面OAB1,然后證明CC1⊥AB1
(Ⅱ)說明OA⊥平面BB1C1C.求出${S_{四形B{B_1}{C_1}C}}$,然后求解四棱錐A-BCC1B1的體積.

解答 解:(Ⅰ)證明:連AC1,CB1,則△ACC1和△B1CC1均為等腰直角三角形.
取CC1中點(diǎn)O,連OA,OB1,則:
CC1⊥OA,CC1⊥OB1,
則CC1⊥平面OAB1,…(4分)
所以CC1⊥AB1.   …(6分)
(Ⅱ)解:由(Ⅰ)知,OA=OB1=$\sqrt{2}$,又AB1=2,
所以O(shè)A⊥OB1.又OA⊥CC1,OB1∩CC1=O,
所以O(shè)A⊥平面BB1C1C.${S_{四形B{B_1}{C_1}C}}$=BC×BB1=4.
所以${V_{A-B{B_1}{C_1}C}}=\frac{1}{3}×4×\sqrt{2}=\frac{{4\sqrt{2}}}{3}$.…(12分)

點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理,平面與平面垂直的性質(zhì)定理的應(yīng)用,幾何體的體積的求法,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓E:$\frac{x^2}{18}+\frac{y^2}{9}$=1,斜率為1的直線交E于A,B兩點(diǎn),若AB的中點(diǎn)為P,O為坐標(biāo)原點(diǎn),則直線OP的斜率為( 。
A.-1B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.$y=sin3x-\sqrt{3}cos3x$圖象的一個(gè)對(duì)稱中心可以是(  )
A.(0,0)B.$(\frac{π}{3},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{9},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=1-x2,則函數(shù)$f(\frac{1}{f(2)})$的值為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)等差數(shù)列{an}的前n項(xiàng)和為12,前2n項(xiàng)和為24,則前3n項(xiàng)和為(  )
A.36B.48C.38D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)Z滿足Z•(1-2i)=5i,則復(fù)數(shù)Z在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點(diǎn)A(0,2)的圓與直線x-y-4=0相切于P(6,2),則圓的方程是(  )
A.(x-5)2+(y-3)2=18B.(x-5)2+(y-3)2=9C.(x-3)2+(y-5)2=18D.(x-3)2+(y-5)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{{{{(x+1)}^2}}}{{\sqrt{x+2}}}$的定義域是(-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到一些統(tǒng)計(jì)量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.656.36.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(I)根據(jù)表中數(shù)據(jù),求回歸方程y=c+d$\sqrt{x}$;
(II)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x,根據(jù)( II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費(fèi)x=90時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線$\stackrel{∧}{v}$=α+βu的斜率和截距的最小二乘估計(jì)分別為:
$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案