A. | $\frac{{9\sqrt{3}}}{4}$ | B. | $\frac{{9\sqrt{3}}}{4}$或$\frac{{3\sqrt{3}}}{4}$ | C. | $\frac{{27\sqrt{3}}}{4}$ | D. | $\frac{{27\sqrt{3}}}{4}$或$\frac{{\sqrt{3}}}{4}$ |
分析 先畫出圖形,正三棱錐外接球的球心在它的高上,然后根據(jù)三角形相似解出正三棱錐的高,則棱錐體積可求.
解答 解:如圖,設(shè)正三棱錐的高為h,球心在正三棱錐的高所在的直線上,H為底面正三棱錐的中心,
∵底面邊長(zhǎng)AB=3,∴AH=$\frac{2}{3}AD=\frac{2}{3}\sqrt{{3}^{2}-(\frac{3}{2})^{2}}=\frac{2}{3}×\frac{3\sqrt{3}}{2}$=$\sqrt{3}$.
當(dāng)S與球心在底面ABC的同側(cè)時(shí),有AH2+OH2=OA2,即$(\sqrt{3})^{2}+(h-2)^{2}={2}^{2}$,解得h=3,
棱錐的體積為V=$\frac{1}{3}×\frac{1}{2}×3×\frac{3\sqrt{3}}{2}×3=\frac{9\sqrt{3}}{4}$;
當(dāng)S與球心在底面ABC的異側(cè)時(shí),有AH2+OH2=OA2,即$(\sqrt{3})^{2}+(2-h)^{2}={2}^{2}$,解得h=1,
棱錐的體積為V=$\frac{1}{3}×\frac{1}{2}×3×\frac{3\sqrt{3}}{2}×1=\frac{27\sqrt{3}}{4}$.
∴棱錐的體積為$\frac{{27\sqrt{3}}}{4}$或$\frac{{\sqrt{3}}}{4}$.
故選:D.
點(diǎn)評(píng) 本題考查棱柱、棱錐及棱臺(tái)的體積,考查空間想象能力和思維能力,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4個(gè) | B. | 8個(gè) | C. | 16個(gè) | D. | 32個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,1] | C. | (-∞,0)∪(0,1] | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [一l,+∞) | B. | (一1,+∞) | C. | (一∞,一1] | D. | (一∞,一l) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | 5 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com