A. | $\overrightarrow a+\overrightarrow b$ | B. | $2\overrightarrow a+3\overrightarrow b$ | C. | $3\overrightarrow a-2\overrightarrow b$ | D. | $2\overrightarrow b-2\overrightarrow a$ |
分析 由已知得AB是△MSN的中位線,從而$\overrightarrow{MN}$=2$\overrightarrow{AB}$,由此能求出結(jié)果.
解答 解:∵$\overrightarrow{OA}=\overrightarrow a,\overrightarrow{OB}=\overrightarrow b$,任意點(diǎn)M關(guān)于點(diǎn)A的對稱點(diǎn)為S,點(diǎn)S關(guān)于點(diǎn)B的對稱點(diǎn)為N,
∴AB是△MSN的中位線,
∴$\overrightarrow{MN}$=2$\overrightarrow{AB}$=2($\overrightarrow{OB}-\overrightarrow{OA}$)=2$\overrightarrow-2\overrightarrow{a}$.
故選:D.
點(diǎn)評 本題考查向量的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m⊥α,n⊥α,則m∥n | B. | 若α∥β,β⊥γ,則α⊥γ | C. | 若m∥n,m⊥α,則n⊥α | D. | 若α⊥γ,β⊥γ,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-1,1) | C. | (-∞,-1]∪[1,+∞) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com