已知函數(shù)f(x)=sin(ωx+φ)其中ω>0,|φ|<
π
2

(1)若cos
π
4
cosφ-sin
4
sinφ=0.求φ的值;
(2)在(1)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于
π
3
,求函數(shù)f(x)的解析式;并求最小正實(shí)數(shù)m,使得函數(shù)f(x)的圖象象左平移m個單位所對應(yīng)的函數(shù)是偶函數(shù).
分析:(I)利用特殊角的三角函數(shù)值化簡cos
π
4
cosφ-sin
4
sinφ=0
,根據(jù)|φ|<
π
2
直接求出φ的值;
(Ⅱ)解法一:在(I)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于
π
3
,求出周期,求出ω,得到函數(shù)f(x)的解析式;函數(shù)f(x)的圖象向左平移m個單位所對應(yīng)的函數(shù)是偶函數(shù).推出m=
3
+
π
12
(k∈Z)
,可求最小正實(shí)數(shù)m.
解法二:在(I)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于
π
3
,求出周期,求出ω,得到函數(shù)f(x)的解析式;利用g(x)是偶函數(shù)當(dāng)且僅當(dāng)g(-x)=g(x)對x∈R恒成立,使得函數(shù)f(x)的圖象向左平移m個單位所對應(yīng)的函數(shù)是偶函數(shù).化簡cos(3m+
π
4
)=0
,然后再求最小正實(shí)數(shù)m.
解答:解:(I)由cos
π
4
cosφ-sin
4
sinφ=0
cos
π
4
cosφ-sin
π
4
sinφ=0

cos(
π
4
+φ)=0
|φ|<
π
2
,∴φ=
π
4

(Ⅱ)解法一:由(I)得,f(x)=sin(ωx+
π
4
)
依題意,
T
2
=
π
3
T=
ω
,故ω=3,∴f(x)=sin(3x+
π
4
)

函數(shù)f(x)的圖象向左平移m個單位后所對應(yīng)的函數(shù)為g(x)=sin[3(x+m)+
π
4
]
g(x)是偶函數(shù)當(dāng)且僅當(dāng)3m+
π
4
=kπ+
π
2
(k∈Z)
m=
3
+
π
12
(k∈Z)
從而,最小正實(shí)數(shù)m=
π
12

解法二:由(I)得,f(x)=sin(ωx+
π
4
)
,依題意,
T
2
=
π
3
T=
ω
,故ω=3,∴f(x)=sin(3x+
π
4
)

函數(shù)f(x)的圖象向左平移m個單位后所對應(yīng)的函數(shù)為g(x)=sin[3(x+m)+
π
4
]
,g(x)是偶函數(shù)當(dāng)且僅當(dāng)g(-x)=g(x)對x∈R恒成立
亦即sin(-3x+3m+
π
4
)=sin(3x+3m+
π
4
)
對x∈R恒成立.∴sin(-3x)cos(3m+
π
4
)+cos(-3x)sin(3m+
π
4
)
=sin3xcos(3m+
π
4
)+cos3xsin(3m+
π
4
)

2sin3xcos(3m+
π
4
)=0
對x∈R恒成立.∴cos(3m+
π
4
)=0

3m+
π
4
=kπ+
π
2
(k∈Z)
m=
3
+
π
12
(k∈Z)
從而,最小正實(shí)數(shù)m=
π
12
點(diǎn)評:本題是中檔題,考查三角函數(shù)的字母變量的求法,三角函數(shù)的圖象的平移,偶函數(shù)的性質(zhì),轉(zhuǎn)化思想的應(yīng)用,考查計算能力,是?碱}.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實(shí)數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點(diǎn);②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
x
在(0,1)為減函數(shù).
(1)求b的值;
(2)設(shè)函數(shù)φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

①求矩陣A;
②已知矩陣B=
1-1
01
,點(diǎn)O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點(diǎn)P是曲線C上的一個動點(diǎn),求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案