在數(shù)列{an}中,a1=-3,an=2an-1+2n+3(n≥2.且n∈N*
(1)求a2,a3的值;
(2)設(shè)bn=
an+3
2n
(n∈N*)
,證明:{bn}是等差數(shù)列.
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)直接由已知結(jié)合遞推式求得a2,a3的值;
(2)直接利用作差法然后代入數(shù)列遞推式得答案.
解答: (1)解:由a1=-3,an=2an-1+2n+3(n≥2.且n∈N*),
得a2=2a1+2+3=1,a3=2a22+23+3=13;
(2)證明:bn+1-bn=
an+1+3
2n+1
-
an+3
2n

=
1
2n+1
(an+1-2an-3)=
2n+1
2n+1
=1

∴數(shù)列{bn }是公差為1的等差數(shù)列.
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在R上的連續(xù)函數(shù)f(x),存在常數(shù)k(k∈R),使得f(x+k)+kf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱f(x)為k層的螺旋函數(shù),現(xiàn)給出四個(gè)命題:
①f(x)=2是2層螺旋函數(shù); 
②f(x)=x2是k層螺旋函數(shù);
③f(x)=4x是-
1
2
層螺旋函數(shù);
④f(x)=sin(πx)是1層螺旋函數(shù).
其中正確的命題有( 。
A、①③B、②③C、③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且acosB-bcosA=
3
5
c,
(1)求
tanA
tanB
的值;
(2)當(dāng)tan(A-B)取最大值時(shí),判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=6sin(ωx+ϕ)(ω>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),若tan∠APB=2,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)在區(qū)間(0,1)上是增函數(shù)的是( 。
A、y=|x|
B、y=3-2x
C、y=
1
2+x
D、y=x2-4x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是一次函數(shù),且滿足3f(x+1)-f(x)=2x+9,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式3-|-2x-1|>0的解集是:( 。
A、{x|x<-2或x>1}
B、{x|-2<x<1}
C、{x|-1<x<2}
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式-x(x+5)2<(x2-2)(x+5)2的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

確定函數(shù)y=x-
1
x
在區(qū)間(-∞,0)上的單調(diào)性,并用定義證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案