f(x)=x2-2x+4的單調(diào)減區(qū)間是
(-∞,1]
(-∞,1]
分析:將二次函數(shù)進(jìn)行配方,利用二次函數(shù)的圖象和性質(zhì)函數(shù)的遞減區(qū)間.
解答:解:將函數(shù)進(jìn)行配方得f(x)=x2-2x+4=(x-1)2+3,對(duì)稱軸為x=1,拋物線開口向上,
所以函數(shù)的單調(diào)減區(qū)間為(-∞,1].
故答案為:(-∞,1].
點(diǎn)評(píng):本題主要考查二次函數(shù)的圖象和性質(zhì),利用配方法是解決二次 函數(shù)的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+2x  ,x>0
0               ,x=0
x2+mx    ,x<0
為奇函數(shù),若函數(shù)f(x)在區(qū)間[-1,|a|-2]上單調(diào)遞增,則a的取值范圍是
[-3,-1)∪(1,3]
[-3,-1)∪(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+2x,x∈[-1,3]的值域?yàn)?!--BA-->
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中的f(x)與g(x)是同一函數(shù)的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x2+
2
x
(x>0)
的最小值,并確定取得最小值時(shí)x的值.列表如下,請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
x 0.25 0.5 0.75 1 1.1 1.2 1.5 2 3 5
y 8.063 4.25 3.229 3 3.028 3.081 3.583 5 9.667 25.4
已知:函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間(0,1)上遞減,問:
(1)函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間
[1,+∞)
[1,+∞)
上遞增.當(dāng)x=
1
1
時(shí),y最小=
3
3

(2)函數(shù)g(x)=9x2+
2
3|x|
在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+3在閉區(qū)間[0,m]上的值域是[2,3],則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案