5.函數(shù)y=$\frac{1}{2}sin2x+{sin^2}$x,x∈R的遞減區(qū)間為( 。
A.$[{kπ-\frac{π}{8},kπ+\frac{π}{8}}],k∈Z$B.$[{\frac{kπ}{2}-\frac{π}{8},\frac{kπ}{2}+\frac{π}{8}}],k∈Z$
C.$[{kπ+\frac{3π}{8},kπ+\frac{7π}{8}}],k∈Z$D.$[{\frac{kπ}{2}+\frac{3π}{8},\frac{kπ}{2}+\frac{7π}{8}}],k∈Z$

分析 利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的減區(qū)間,求得所給函數(shù)的減區(qū)間.

解答 解:函數(shù)y=$\frac{1}{2}sin2x+{sin^2}$x=$\frac{1}{2}$sin2x+$\frac{1}{2}$-$\frac{1}{2}$cos2x=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,故函數(shù)的減區(qū)間為[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z,
故選:C.

點評 本題主要考查三角恒等變換,正弦函數(shù)的減區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線x2=-4y的焦點到準(zhǔn)線的距離為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項和為Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow$=(2n-1,$\frac{1}{2}$),滿足條件$\overrightarrow{a}$∥$\overrightarrow$
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)函數(shù)f(x)=($\frac{1}{2}$)x,數(shù)列{bn}滿足條件b1=2,f(bn+1)=$\frac{1}{f(-3-_{n})}$,(n∈N*)
(i)求數(shù)列{bn}的通項公式;
(ii)設(shè)cn=$\frac{_{n}}{{a}_{n}}$,數(shù)列{cn}的前n項和Tn,求證1≤Tn<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若關(guān)于x的不等式ax2+bx-1>0的解集為$(\frac{1}{3},\frac{1}{2})$.
(1)求a,b;
(2)求兩平行線l1:3x+4y+a=0,l2:3x+4y+b=0之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓M:(x-1)2+y2=$\frac{3}{8}$,橢圓C:$\frac{{x}^{2}}{3}$+y2=1,若直線l與橢圓交于A,B兩點,與圓M相切于點P,且P為AB的中點,則這樣的直線l有(  )
A.2條B.3條C.4條D.6條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.把下列各角度化成弧度:
(1)36°;(2)-150°;(3)1095°;(4)1440°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式|x-1|+|x+3|≥6的解集是(-∞,-4]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}的前n項和為Sn,a1=1,a2=2且Sn+2-3Sn+1+2Sn+an=0,(n∈N*),記Tn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n},(n∈{N^*})$,若(n+6)λ≥Tn對n∈N*恒成立,則λ的最小值為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,有6種不同顏色的涂料可供涂色,每個頂點只能涂一種顏色的涂料,其中A和C1同色、B和D1同色,C和A1同色,D和B1同色,且圖中每條線段的兩個端點涂不同顏色,則涂色方法有( 。
A.720種B.360種C.120種D.60種

查看答案和解析>>

同步練習(xí)冊答案