(2013•豐臺(tái)區(qū)二模)已知橢圓C:
x2
4
+y2=1
,其短軸的端點(diǎn)分別為A,B(如圖),直線AM,BM分別與橢圓C交于E,F(xiàn)兩點(diǎn),其中點(diǎn)M (m,
1
2
) 滿足m≠0,且m≠±
3

(Ⅰ)求橢圓C的離心率e;
(Ⅱ)用m表示點(diǎn)E,F(xiàn)的坐標(biāo);
(Ⅲ)證明直線EF與y軸交點(diǎn)的位置與m無(wú)關(guān).
分析:(Ⅰ)由橢圓的標(biāo)準(zhǔn)方程即可得出a,b,利用c2=a2-b2即可得到c,再利用離心率的計(jì)算公式e=
c
a
即可得出;
(Ⅱ)利用點(diǎn)斜式分別寫(xiě)出直線AM,BM的方程,與橢圓的方程聯(lián)立,即可得到點(diǎn)E,F(xiàn)的坐標(biāo);
(Ⅲ)利用(Ⅱ)得到直線EF的方程,令x=0,即可得到y(tǒng)的值.
解答:解:(Ⅰ)依題意知a=2,c=
3
,∴e=
3
2
;              
(Ⅱ)∵A(0,1),B(0,-1),M (m,
1
2
),且m≠0,
∴直線AM的斜率為k1=-
1
2m
,直線BM斜率為k2=
3
2m
,
∴直線AM的方程為y=-
1
2m
x+1
,直線BM的方程為y=
3
2m
x-1
,
x2
4
+y2=1
y=-
1
2m
x+1
得(m2+1)x2-4mx=0,
x=0,x=
4m
m2+1
,∴E(
4m
m2+1
,
m2-1
m2+1
)

x2
4
+y2=1
y=
3
2m
x-1
得(9+m2)x2-12mx=0,
x=0,x=
12m
m2+9
,∴F(
12m
m2+9
,
9-m2
m2+9
)
;                
(Ⅲ)由(Ⅱ)可知:
kEF=
9-m2
m2+9
-
m2-1
m2+1
12m
m2+9
-
4m
m2+1
=-
m2+3
4m

∴直線EF的方程為:y-
m2-1
m2+1
=-
m2+3
4m
(x-
4m
m2+1
)
,
令x=0,得y=
m2-1
m2+1
+
m2+3
m2+1
=2,
∴直線EF與y軸的交點(diǎn)為(0,2)與m無(wú)關(guān).
點(diǎn)評(píng):熟練掌握橢圓的方程及其性質(zhì)、直線與橢圓相交問(wèn)題、點(diǎn)斜式等是解題的關(guān)鍵.本題需要較強(qiáng)的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)二模)已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時(shí),f(x)=-x(2+x),當(dāng)x∈[2,+∞)時(shí),f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個(gè)命題如下:
①當(dāng)a=2,m=0時(shí),直線l與圖象G恰有3個(gè)公共點(diǎn);
②當(dāng)a=3,m=
1
4
時(shí),直線l與圖象G恰有6個(gè)公共點(diǎn);
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.
其中正確命題的序號(hào)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)二模)若函數(shù)f(x)=ax(a>0,a≠1)在[-2,1]上的最大值為4,最小值為m,則m的值是
1
16
1
2
1
16
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)二模)已知橢圓C:
x2
4
+y2=1
的短軸的端點(diǎn)分別為A,B,直線AM,BM分別與橢圓C交于E,F(xiàn)兩點(diǎn),其中點(diǎn)M (m,
1
2
) 滿足m≠0,且m≠±
3

(Ⅰ)求橢圓C的離心率e;
(Ⅱ)用m表示點(diǎn)E,F(xiàn)的坐標(biāo);
(Ⅲ)若△BME面積是△AMF面積的5倍,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)二模)已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時(shí),f(x)=-x(2+x),當(dāng)x∈[2,+∞)時(shí),f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個(gè)命題如下:
①當(dāng)a=4時(shí),存在直線l與圖象G恰有5個(gè)公共點(diǎn);
②若對(duì)于?m∈[0,1],直線l與圖象G的公共點(diǎn)不超過(guò)4個(gè),則a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.
其中正確命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)二模)下列四個(gè)函數(shù)中,最小正周期為π,且圖象關(guān)于直線x=
π
12
對(duì)稱(chēng)的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案