已知2a+1<0,關于x的不等式x2-4ax-5a2>0的解集是( 。
A、{x|x>5a或x<-a}
B、{x|-a<x<5a}
C、{x|x<5a或x>-a}
D、{x|5a<x<-a}
考點:一元二次不等式的解法
專題:不等式的解法及應用
分析:求出不等式對應的方程的兩根,并判定兩根的大小,從而得出不等式的解集.
解答: 解:不等式x2-4ax-5a2>0可化為
(x-5a)(x+a)>0;
∵方程(x-5a)(x+a)=0的兩根為
x1=5a,x2=-a,
且2a+1<0,∴a<-
1
2
,
∴5a<-a;
∴原不等式的解集為{x|x<5a,或x>-a}.
故選:C.
點評:本題考查了含有字母系數(shù)的不等式的解法問題,解題時應根據(jù)條件,比較對應的方程兩根的大小,求出不等式的解集來,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

學校計劃利用周五下午第一、二、三節(jié)課舉辦語文、數(shù)學、英語、理綜4科的專題講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學、理綜不安排在同一節(jié),則不同的安排方法共有(  )
A、36種B、30種
C、24種D、6種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足a1=2且an+an-1=2n+2n-1,Sn為數(shù)列{an}的前n項和,則log2(S2012+2)等于( 。
A、2013B、2012
C、2011D、2010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2x+sinx的單調(diào)增區(qū)間是(  )
A、(-∞,+∞)
B、(0,+∞)
C、(2kπ-
π
2
,2kπ+
π
2
),k∈Z
D、以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位業(yè)務人員、管理人員、后勤服務人員人數(shù)之比依次為15:3:2.為了了解該單位職員的某種情況,采用分層抽樣方法抽出一個容量為n的樣本,樣本中業(yè)務人員人數(shù)為30,則此樣本的容量n為( 。
A、20B、30C、40D、80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z滿足:z(1+i2013)=i2014(i是虛數(shù)單位),則復數(shù)z在復平面內(nèi)位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別F1、F2焦距為2,且與雙曲線
x2
2
-y2=1共頂點.P為橢圓C上一點,直線PF1交橢圓C于另一點Q.
(1)求橢圓C的方程;
(2)若點P的坐標為(0,b),求過P、Q、F2三點的圓的方程;
(3)若
F1P
QF1
,且λ∈[
1
2
,2],求
OP
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中裝有10個大小相同的黑球和白球.已知從袋中任意摸出2個球,至少得到1個白球的概率是
7
9

(1)求白球的個數(shù);
(2)從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,d為常數(shù),已知對?n,m∈N*,當n>m,總有Sn-Sm=Sn-m+m(n-m)d成立
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若正整數(shù)n,m,k成等差數(shù)列,比較Sn+Sk與2Sm的大小,并說明理由;
(3)探究:命題p:“對?n,m∈N*,當n>m時,總有Sn-Sm=Sn-m+m(n-m)d”是命題q:“數(shù)列{an}是等差數(shù)列”的充要條件嗎?請證明你的結(jié)論;由此類比,請你寫出數(shù)列{bn}是等比數(shù)列(公比為q,且q≠0)的充要條件(無需證明)?

查看答案和解析>>

同步練習冊答案