【題目】已知函數(shù).
(Ⅰ)求曲線(xiàn)的斜率為1的切線(xiàn)方程;
(Ⅱ)當(dāng)時(shí),求證:;
(Ⅲ)設(shè),記在區(qū)間上的最大值為M(a),當(dāng)M(a)最小時(shí),求a的值.
【答案】(Ⅰ)和.
(Ⅱ)見(jiàn)解析;
(Ⅲ).
【解析】
(Ⅰ)首先求解導(dǎo)函數(shù),然后利用導(dǎo)函數(shù)求得切點(diǎn)的橫坐標(biāo),據(jù)此求得切點(diǎn)坐標(biāo)即可確定切線(xiàn)方程;
(Ⅱ)由題意分別證得和即可證得題中的結(jié)論;
(Ⅲ)由題意結(jié)合(Ⅱ)中的結(jié)論分類(lèi)討論即可求得a的值.
(Ⅰ),令得或者.
當(dāng)時(shí),,此時(shí)切線(xiàn)方程為,即;
當(dāng)時(shí),,此時(shí)切線(xiàn)方程為,即;
綜上可得所求切線(xiàn)方程為和.
(Ⅱ)設(shè),,令得或者,所以當(dāng)時(shí),,為增函數(shù);當(dāng)時(shí),,為減函數(shù);當(dāng)時(shí),,為增函數(shù);
而,所以,即;
同理令,可求其最小值為,所以,即,綜上可得.
(Ⅲ)由(Ⅱ)知,
所以是中的較大者,
若,即時(shí),;
若,即時(shí),;
所以當(dāng)最小時(shí),,此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是等腰梯形,,.在梯形中,,且,,平面.
(Ⅰ)求證:.
(II)求四棱錐與三棱錐體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過(guò)一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】華為手機(jī)作為華為公司三大核心業(yè)務(wù)之一,2018年的銷(xiāo)售量躍居全球第二名,某機(jī)構(gòu)隨機(jī)選取了100名華為手機(jī)的顧客進(jìn)行調(diào)查,并將這人的手機(jī)價(jià)格按照,,…分成組,制成如圖所示的頻率分布直方圖,其中是的倍.
(1)求,的值;
(2)求這名顧客手機(jī)價(jià)格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);
(3)利用分層抽樣的方式從手機(jī)價(jià)格在和的顧客中選取人,并從這人中隨機(jī)抽取人進(jìn)行回訪,求抽取的人手機(jī)價(jià)格在不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家水果店,銷(xiāo)售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷(xiāo)量,李明對(duì)這四種水果進(jìn)行促銷(xiāo):一次購(gòu)買(mǎi)水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.
①當(dāng)x=10時(shí),顧客一次購(gòu)買(mǎi)草莓和西瓜各1盒,需要支付__________元;
②在促銷(xiāo)活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷(xiāo)前總價(jià)的七折,則x的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿(mǎn)足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿(mǎn)足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{bn}的通項(xiàng)公式;
②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),則實(shí)數(shù)a的取值范圍是( 。
A. [2,3]∪(﹣∞,﹣5]B. (﹣∞,2)∪(3,5)
C. [2,3]D. [5,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
當(dāng)時(shí),,求實(shí)數(shù)a的取值范圍;
當(dāng)時(shí),曲線(xiàn)和曲線(xiàn)是否存在公共切線(xiàn)?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com