1、在三棱錐A-BCD中,若AD⊥BC,BD⊥AD,△BCD是銳角三角形,那么必有( 。
分析:如圖:由已知:AD⊥BC,AD⊥BD,可以得到 AD與底面BCD垂直,再去尋找AD所在的平面即可.
解答:證明:由AD⊥BC,BD⊥AD?AD⊥平面BCD,AD?平面ADC,
∴平面ADC⊥平面BCD.
故選C.
點評:本題考查平面與平面垂直的判定,要牢記判定定理的條件,其證明思路是:要轉(zhuǎn)化為線面垂直來證明.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且長度均為1,E為BC中點,則下列結(jié)論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐A-BCD中,AB=4,CD=2,且異面直線AB、CD所成的角為60°,若M、N分別是AD、BC的中點,則MN=
3
7
3
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•渭南三模)在三棱錐A-BCD中,BD=BC=1,BD⊥BC,DE⊥AB,AD=2,AD⊥平面BCD.
(Ⅰ)求證:DE⊥平面ABC;
(Ⅱ)求平面BAC與平面DAC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜
邊,且AD=
3
,BD=CD=1,另一個側(cè)面ABC是正三角形.
(1)當正視圖方向與向量
CD
的方向相同時,畫出三棱錐A-BCD的三視圖;(要求標出尺寸)
(2)求二面角B-AC-D的余弦值;
(3)在線段AC上是否存在一點E,使ED與平面BCD成30°角?若存在,確定點E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點,且MN=PQ.
(1)求證:四邊形MNPQ為平行四邊形;
(2)試在直線AC上找一點F,使得MF⊥AD.

查看答案和解析>>

同步練習冊答案