12.已知i為虛數(shù)單位,則其連續(xù)2017個正整數(shù)次冪之和i+i2+i3+…+i2017=i.

分析 利用復(fù)數(shù)的周期性、等比數(shù)列的求和公式即可得出.

解答 解:∵i4=1,∴i2017=(i4504•i=i.
∴i+i2+i3+…+i2017=$\frac{i({1-i}^{2017})}{1-i}$=$\frac{i(1-i)}{1-i}$=i.
故答案為:i.

點評 本題考查了復(fù)數(shù)的周期性、等比數(shù)列的求和公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.邊長為a的正方體表面積為( 。
A.6a2B.4a2C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\sqrt{3}{a^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)定義域為R的奇函數(shù)$f(x)=\frac{1}{{{2^x}+a}}-\frac{1}{2}$(a為實數(shù)).
(Ⅰ)求a的值;
(Ⅱ)判斷f(x)的單調(diào)性(不必證明),并求出f(x)的值域;
(Ⅲ)若對任意的x∈[1,4],不等式f(k-$\frac{2}{x}$)+f(2-x)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.國家實施二孩放開政策后,為了了解人們對此政策持支持態(tài)度是否與年齡有關(guān),計生部門將已婚且育有一孩的居民分成中老年組(45歲以上,含45歲)和中青年組(45歲以下,不含45歲)兩個組別,每組各隨機(jī)調(diào)查了50人,對各組中持支持態(tài)度和不支持態(tài)度的人所占的頻率繪制成等高條形圖,如圖所示:
支持不支持合計
中老年組104050
中青年組252550
合 計3565100
(1)根據(jù)以上信息完成2×2列聯(lián)表;
(2)是否有99%以上的把握認(rèn)為人們對此政策持支持態(tài)度與年齡有關(guān)?
P(K2≥k00.0500.0100.001
k03.8416.63510.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序,若輸出的結(jié)果為2,則輸入的x的值為( 。
A.0或-1B.0或2C.-1或2D.-1或0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某品牌電腦專賣店的年銷售量y與該年廣告費用x有關(guān),如表收集了4組觀測數(shù)據(jù):
x(萬元)1456
y(百臺)30406050
以廣告費用x為解釋變量,銷售量y為預(yù)報變量對這兩個變量進(jìn)行統(tǒng)計分析.
(1)已知這兩個變量呈線性相關(guān)關(guān)系,試建立y與x之間的回歸方程$\hat y=\hat bx+\hat a$;
(2)假如2017年該專賣店廣告費用支出計劃為10萬元,請根據(jù)你得到的模型,預(yù)測這一年的銷售量y.
參考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={y|y=-x2+4},N={x|y=log2x},則M∩N=( 。
A.[4,+∞)B.(-∞,4]C.(0,4)D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$cos(x-\frac{π}{4})=\frac{{\sqrt{2}}}{10},x∈(\frac{π}{2},\frac{3π}{4})$.
(1)求sinx的值;
(2)求$sin(2x+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題:“?x>0,x2+x≥0”的否定形式是( 。
A.?x≤0,x2+x>0B.?x>0,x2+x≤0C.?x0>0,x02+x0<0D.?x0≤0,x02+x0>0

查看答案和解析>>

同步練習(xí)冊答案