【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,數(shù)列的前n項(xiàng)和為,若不等式
對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
【答案】(1);(2)(-2,3)。
【解析】
(1)對(duì)于anbn+bn=nbn+1.令n=1可求得a1=1,由等差數(shù)列的通項(xiàng)公式可求得an=2n-1。進(jìn)而anbn+bn=nbn+1可變?yōu)?/span>2bn=bn+1,可得數(shù)列為等比數(shù)列,由等比數(shù)列的通項(xiàng)公式可求得bn=2n-1. (2)根據(jù)已知條件應(yīng)先求得cn==,由特點(diǎn)根據(jù)錯(cuò)位相減法可求得Tn=4-.則不等式(-1)nλ<Tn+,化為(-1)nλ<4-,對(duì)n分奇數(shù)、偶數(shù)討論,根據(jù)不等式恒成立可求實(shí)數(shù)λ的取值范圍。
(1) ∵數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
∴ n=1時(shí),a1+1=2,解得a1=1.
又?jǐn)?shù)列{an}是公差為2的等差數(shù)列,
∴an=1+2(n-1)=2n-1.
∴ 2nbn=nbn+1,化為2bn=bn+1,
∴數(shù)列{bn}是首項(xiàng)為1,公比為2的等比數(shù)列.
∴bn=2n-1.
(2)由數(shù)列{cn}滿足cn===,數(shù)列{cn}的前n項(xiàng)和為
Tn=1+++…+,
∴ Tn=++…++,
兩式作差,得
∴Tn=1+++…+-=-=2-,
∴Tn=4-.
不等式(-1)nλ<Tn+,化為(-1)nλ<4-,
當(dāng)n=2k(k∈N*)時(shí),λ<4-,取n=2,
∴λ<3.
當(dāng)n=2k-1(k∈N*)時(shí),-λ<4-,取n=1,
∴λ>-2.
綜上可得:實(shí)數(shù)λ的取值范圍是(-2,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈[﹣2,0],使得f(x2)≤g(x1)成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐S-ABC中,△ABC是邊長(zhǎng)為6的正三角形,SA=SB=SC=15,平面DEFH分別與AB,BC,SC,SA交于點(diǎn)D,E,F(xiàn),H.且D,E分別是AB,BC的中點(diǎn),如果直線SB∥平面DEFH,那么四邊形DEFH的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列三種說(shuō)法:
①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.
其中所有正確說(shuō)法的序號(hào)為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和Sn=n2+n .
(1)求數(shù)列的通項(xiàng)公式an;
(2)令 ,求數(shù)列{bn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) | |||||
機(jī)床甲 | 8 | 12 | 40 | 32 | 8 |
機(jī)床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(rùn)(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的編號(hào)為1,2,3,4的球,從袋中隨機(jī)抽取一個(gè)球,將其編號(hào)記為m,然后從袋中余下的三個(gè)球中再隨機(jī)抽取一個(gè)球,將其編號(hào)記為n,則關(guān)于x的一元二次方程無(wú)實(shí)根的概率為__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)在開(kāi)學(xué)季準(zhǔn)備銷售一種盒飯進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該盒飯獲利潤(rùn)10元,未售出的產(chǎn)品,每盒虧損5元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了150盒該產(chǎn)品,以x(單位:盒,)表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量,y(單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量x的平均數(shù)和眾數(shù);
(2)將y表示為x的函數(shù);
(3)根據(jù)頻率分布直方圖估計(jì)利潤(rùn)y不少于1050元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱柱A1B1C1﹣ABC中,側(cè)棱與底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中點(diǎn).
(1)求證:A1B∥平面AMC1;
(2)求平面A1B1M與平面AMC1所成角的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com