設(shè)l,m是兩條不同的直線,α是一個(gè)平面,則下列命題正確的是( 。
A、若l∥α,m⊥α,則l⊥m
B、若l⊥m,m∥α則l⊥α
C、若l⊥m,m⊥α,則l∥α
D、若l∥α,m∥α則l∥m
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:計(jì)算題,空間位置關(guān)系與距離
分析:利用空間中線線、線面間的位置關(guān)系進(jìn)行判斷即可
解答: 解:對(duì)于A,若l∥α,m⊥α,則l⊥m,故A正確;
對(duì)于B,若l⊥m,m∥α則l⊥α或l∥α或l?α,故B錯(cuò)誤;
對(duì)于C,若l⊥m,m⊥α,則l∥α或l?α,故C錯(cuò)誤;
對(duì)于D,若l∥α,m∥α則l∥m或重合或異面;故D錯(cuò)誤;
故選A.
點(diǎn)評(píng):本題考查空間中線線、線面間的位置關(guān)系,考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={-1,1},B={x|x+m=0},且A∪B=A,則m的值為( 。
A、1B、-1
C、1或-1D、1或-1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-1-ax(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈(0,2]時(shí),討論函數(shù)F(x)=f(x)-xlnx零點(diǎn)的個(gè)數(shù);
(Ⅲ)若g(x)=ln(ex-1)-lnx,當(dāng)a=1時(shí),求證:f[g(x)]<f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
a
x
+xlnx,g(x)=x3-x2-3.
(1)當(dāng)x∈[0,2]時(shí),求g(x)的最大值和最小值;
(2)如果對(duì)任意的s,t∈[
1
2
,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=xlnx,g(x)=x2-1.
(1)令h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間;
(2)若當(dāng)x≥1時(shí),f(x)-mg(x)≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=
an2-2an+2
+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an+an+1-2,證明
1
b1
+
1
b2
+…+
1
bn
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
3
x3-
1
2
ax2+x+2.
(Ⅰ)若f(x)在R上單調(diào)遞增,求a的取值范圍;
(Ⅱ)設(shè)f(x)的導(dǎo)函數(shù)為f′(x).若?α∈(
π
4
,
π
2
)使f′(sinα)=f′(cosα)成立.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2-6x-5>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=2,則拋物線方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案