設(shè)n∈N且n≥2,若an是(1+x)n展開式中含x2項(xiàng)的系數(shù),則
1
a2
+
1
a3
+…+
1
an
=
2(n-1)
n
2(n-1)
n
分析:根據(jù)二項(xiàng)展開式的通項(xiàng)公式求得x2項(xiàng)的系數(shù),然后利用裂項(xiàng)求和法求出所求即可.
解答:解:在(1+x)n的展開式中,通項(xiàng)公式為Tr+1=
C
r
n
•xr,令r=2,則x2項(xiàng)的系數(shù)為an=
C
2
n
=
n(n-1)
2

1
an
=
2
n(n-1)
=2(
1
n-1
-
1
n
)

1
a2
+
1
a3
+…+
1
an
=2(1-
1
2
+
1
2
-
1
3
+…+
1
n-1
-
1
n
)=2(1-
1
n
)=
2(n-1)
n

故答案為:
2(n-1)
n
點(diǎn)評(píng):本題主要考查二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),以及裂項(xiàng)求和法求和,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)設(shè)n∈N*且n≥2,證明:(a1+a2+…+an)2=a12+a22+…+an2+2[a1(a2+a3+…+an)+a2(a3+a4+…+an)+…+an-1an].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)n∈N+且n≥2,證明:數(shù)學(xué)公式+2[a1(a2+a3+…+an)+a2(a3+a4+…+an)+…+an-1an].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)n∈N*且n≥2,證明不等式<1+<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖南省張家界一中高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a1=2,an+1=an+2n+1(n∈N*
(1)求證:數(shù)列{an-2n}為等差數(shù)列;
(2)設(shè)數(shù)列{bn}滿足bn=log2(an+1-n),若對(duì)一切n∈N*且n≥2恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案