已知實(shí)數(shù),且,若恒成立.
(1)求實(shí)數(shù)m的最小值;
(2)若對(duì)任意的恒成立,求實(shí)數(shù)x的取值范圍.

(1)3;(2).

解析試題分析:本題主要考查基本不等式、恒成立問題、絕對(duì)值不等式的解法等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,利用基本不等式先求函數(shù)的最大值,再利用恒成立問題得到的最小值為;第二問,由,先將“對(duì)任意的恒成立”轉(zhuǎn)化為“”,利用零點(diǎn)分段法求去掉絕對(duì)值,解絕對(duì)值不等式,得到x的取值范圍.
(1)
,∴
(當(dāng)且僅當(dāng)時(shí)取等號(hào))
,故,即的最小值為.                                         5分
(2)由(1)
對(duì)任意的恒成立,故只需

解得 .                                                          10分
考點(diǎn):基本不等式、恒成立問題、絕對(duì)值不等式的解法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知不等式的解集是
(1)若,求的取值范圍;
(2)若,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)a=1時(shí),解不等式
(2)若存在成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

證明下列不等式:
(1)已知,求證
(2),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)不等式的解集為M,.
(1)證明:;
(2)比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=|x-a|,其中a>1.
(1)當(dāng)a=2時(shí),求不等式f(x)≥4-|x-4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)-2f(x)|≤2的解集為{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若a,b,m,n都為正實(shí)數(shù),且m+n=1.
求證:≥m+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如果存在實(shí)數(shù)x使不等式|x+1|-|x-2|<k成立,則實(shí)數(shù)k的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用數(shù)學(xué)歸納法證明不等式(n>1,n∈N*)的過程中,用n=k+1時(shí)左邊的代數(shù)式減去n=k時(shí)左邊的代數(shù)式的結(jié)果是A,求代數(shù)式A.

查看答案和解析>>

同步練習(xí)冊(cè)答案