6.在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0)、B(4,0).
(1)若A、B為橢圓的焦點,且橢圓經(jīng)過C、D兩點,求該橢圓的方程;
(1)若A、B為雙曲線的焦點,且雙曲線經(jīng)過C、D兩點,求雙曲線的方程.

分析 (1)由橢圓的定義:丨CA丨+丨CB丨=16=2a,求得a=8,則b2=a2-c2=64-16=48,即可求得橢圓方程;
(2)根據(jù)雙曲線的定義:丨CA丨-丨CB丨=4=2a′,則求得a′=2,則b2=c2-a′2=16-4=12,即可求得雙曲線的標(biāo)準(zhǔn)方程.

解答 解:(1)∵A、B為橢圓的焦點,且橢圓經(jīng)過C、D兩點,
根據(jù)橢圓的定義:丨CA丨+丨CB丨=16=2a,
∴a=8,…4分
在橢圓中:b2=a2-c2=64-16=48,…6分
∴橢圓方程為:$\frac{{x}^{2}}{64}+\frac{{y}^{2}}{48}=1$;…8分
(2)∵A、B為雙曲線的焦點,且雙曲線經(jīng)過C、D兩點,
根據(jù)雙曲線的定義:丨CA丨-丨CB丨=4=2a′,
∴a′=2,…10分
在雙曲線中:b2=c2-a′2=16-4=12,…12分
∴雙曲線方程為:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$.…14分.

點評 本題考查橢圓及雙曲線的標(biāo)準(zhǔn)方程,橢圓及雙曲線的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知實數(shù)a,b滿足等式2a=5b,給出下列五個關(guān)系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中,可能成立的關(guān)系式有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x+x-1=3,則${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$值為( 。
A.$3\sqrt{3}$B.2$\sqrt{5}$C.$4\sqrt{5}$D.$-4\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸出的S=$\frac{2016}{1024}$,判斷框內(nèi)填入的條件可以是( 。
A.n<10B.n≤10C.n≤1024D.n<1024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知直線(2m+1)x+(1-m)y-3(1+m)=0,m∈$(-\frac{1}{2},1)$與兩坐標(biāo)軸分別交于A、B兩點.當(dāng)△OAB的面積取最小值時(O為坐標(biāo)原點),則m的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$-\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,函數(shù)值域為(0,+∞)的是(  )
A.y=(x+1)2,x∈(0,+∞)B.y=log${\;}_{\frac{1}{2}}$x,x∈(1,+∞)
C.y=2x-1D.y=$\sqrt{2x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=$\frac{1{0}^{x}-1{0}^{-x}}{1{0}^{x}+1{0}^{-x}}$.
(1)證明:f(x)是定義域內(nèi)的增函數(shù);
(2)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有下列命題:
①在函數(shù)y=cos(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)的圖象中,相鄰兩個對稱中心的距離為π;
②命題:“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對任意的x∈R,都有sin≤1,則¬p是:存在x0∈R,使得sinx0>1;
⑤命題“若0<a<1,則loga(a+1)>loga(1+$\frac{1}{a}$)”是真命題;
⑥|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$+$\overrightarrow$|恒成立;
⑦若$\overrightarrow{a}$•$\overrightarrow$=0,則$\overrightarrow{a}$⊥$\overrightarrow$;  
其中所有真命題的序號是③④⑤⑦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.我們把b除a的余數(shù)r記為r=abmodb,例如4=9bmod5,如圖所示,若輸入a=209,b=77,則循環(huán)體“r←abmodb”被執(zhí)行了4次.

查看答案和解析>>

同步練習(xí)冊答案