已知實數(shù)x,y滿足
y≥0
y-x≤0
x+y-2≤0
,則點(diǎn)(x,y)到圓(x+1)2+(y-10)2=4上的點(diǎn)的距離的最小值為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用點(diǎn)與圓的位置關(guān)系即可得到結(jié)論.
解答: 解:作出不等式對應(yīng)的平面區(qū)域如圖:
圓(x+1)2+(y-10)2=4的圓心為D(-1,10),半徑r=2.
由圖象可知A與過圓心D的直線與圓相交的點(diǎn)C時,此時最小值為AC,
y-x=0
x+y-2=0
,解得
x=1
y=1
,即A(1,1),
則|AD|=
(-1-1)2+(1-10)2
=
85
,
∴|AC|=
85
-2

故答案為:
85
-2
,
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用以及點(diǎn)與圓位置關(guān)系的應(yīng)用,兩點(diǎn)間的距離公式,綜合性較強(qiáng),涉及的知識點(diǎn)較多,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

己知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)為F(1,0),點(diǎn)A(2,0)在橢圓C上,過F點(diǎn)的直線l與橢圓C交于不同兩點(diǎn)M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l斜率為1,求線段MN的長;
(Ⅲ)設(shè)線段MN的垂直平分線交y軸于點(diǎn)P(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=2x與拋物線C:y=
1
4
x2
交于A(xA,yA)、O(0,0)兩點(diǎn),過點(diǎn)O與直線l垂直的直線交拋物線C于點(diǎn)B(xB,yB).如圖所示.
(1)求拋物線C的焦點(diǎn)坐標(biāo);
(2)求經(jīng)過A、B兩點(diǎn)的直線與y軸交點(diǎn)M的坐標(biāo);
(3)過拋物線y=
1
4
x2
的頂點(diǎn)任意作兩條互相垂直的直線,過這兩條直線與拋物線的交點(diǎn)A、B的直線AB是否恒過定點(diǎn),如果是,指出此定點(diǎn),并證明你的結(jié)論;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按照如圖程序運(yùn)行,則輸出K的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于△ABC,有如下幾個結(jié)論:
①若sin2A=sin2B,則△ABC為等腰三角形;
②若Sn是等比數(shù)列{an}的前n項和,則Sn,S2n-Sn,S3n-S2n仍成等比數(shù)列.
③若sinB=cosA,則△ABC是直角三角形;
④若
a
cos
A
2
=
b
cos
B
2
=
c
cos
C
2
,則△ABC是等邊三角形;
⑤P在△ABC所在平面內(nèi),且
PA
PB
=
PB
PC
=
PC
PA
,則點(diǎn)P是△ABC的垂心.
其中正確的結(jié)論序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列四個命題:
①“若a>1且b>1,則a+b>2”的否命題為真命題;
②命題“p∨q為真”是命題“p∧q為真”的必要不充分條件;
③若loga
2
3
<1,則a的取值范圍為a>1或0<a<
2
3
;
④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為
π
4

其中為假命題的是
 
 (填上所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f (x)=sin(2x-
π
4
)(x∈R) 有下列命題:
①y=f(x)的周期為π;
②x=
π
4
是y=f (x)的一條對稱軸;
③(
π
8
,0)是y=f(x)的一個對稱中心;
④將y=f(x)的圖象向右平移
π
4
個單位,可得到y(tǒng)=2sinxcosx的圖象.
其中正確的命題序號是
 
(把你認(rèn)為正確命題的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示程序框圖中,輸出S=( 。
  
A、45B、-55
C、-66D、66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C兩焦點(diǎn)坐標(biāo)分別為F1(-
3
,0)
,F2(
3
,0)
,且經(jīng)過點(diǎn)P(
3
1
2
)

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A(0,-1),直線l與橢圓C交于兩點(diǎn)M,N.若△AMN是以A為直角頂點(diǎn)的等腰直角三角形,試求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案