分析 先看函數(shù)的定義域是否關(guān)于原點對稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷.
解答 解:函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的定義域為R,且滿足f(-x)=$\frac{{e}^{-x}{-e}^{x}}{2}$=-f(x),
故該函數(shù)為奇函數(shù),
故答案為:奇函數(shù).
點評 本題主要考查函數(shù)的奇偶性的判斷,先看函數(shù)的定義域是否關(guān)于原點對稱,再看f(-x)與f(x)的關(guān)系,再根據(jù)函數(shù)的奇偶性的定義作出判斷,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{π}{12}$ | B. | x=-$\frac{π}{12}$ | C. | x=$\frac{π}{6}$ | D. | x=-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0)∪(0,2] | B. | [-2,0)∪(0,2] | C. | [-2,2] | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{13}}}{5}$ | B. | $\frac{{\sqrt{7}}}{2}$ | C. | $\frac{{2\sqrt{39}}}{9}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com