A. | f(x)=x,$g(x)=\frac{x^2}{x}$ | B. | $f(x)=\sqrt{x^2}$,$g(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$ | ||
C. | $f(x)={(\sqrt{x})^2}$,g(x)=x | D. | $f(x)=\sqrt{x^2}$,$g(x)=\root{3}{x^3}$ |
分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷它們是相等函數(shù).
解答 解:對于A,f(x)=x(x∈R),與g(x)=$\frac{{x}^{2}}{x}$=x(x≠0)的定義域不相同,不是相等函數(shù);
對于B,f(x)=$\sqrt{{x}^{2}}$=|x|=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,與g(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$的定義域相同,對應(yīng)關(guān)系也相同,是相等函數(shù);
對于C,f(x)=${(\sqrt{x})}^{2}$=x(x≥0),與g(x)=x(x∈R)的定義域不相同,不是相等函數(shù);
對于D,f(x)=$\sqrt{{x}^{2}}$=|x|(x∈R),與g(x)=$\root{3}{{x}^{3}}$=x(x∈R)的對應(yīng)關(guān)系不相同,不是相等函數(shù).
故選:B.
點(diǎn)評 本題考查了判斷兩個(gè)函數(shù)是否為相等函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用水量t(單位:噸) | 每噸收費(fèi)標(biāo)準(zhǔn)(單位:元) |
不超過2噸部分 | m |
超過2噸不超過4噸部分 | 3 |
超過4噸部分 | n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “x=1”是“x2-3x+2=0”的充分不必要條件 | |
B. | 命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0” | |
C. | 對于命題p:?x>0,使得x2+x+1<0,則¬p:?x≤0,均有x2+x+1≥0 | |
D. | 若p∨q為假命題,則p、q均為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com