18.已知全集U=R,集合A={x|x≥-1},集合B={x|y=lg(x-2)},則A∩(∁UB)=( 。
A.[-1,2)B.[-1,2]C.[2,+∞)D.[-1,+∞)

分析 根據(jù)集合的補集和交集的定義進行計算即可.

解答 解:B={x|y=lg(x-2)}={x|x>2},則∁UB={x|x≤2},
則A∩(∁UB)={x|-1≤x≤2},
故選:B

點評 本題主要考查集合的基本運算,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-5≤0\\ y≥x+1\\ x≥0\end{array}\right.$,則目標函數(shù)z=2x+y-1的最大值是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=xlnx-\frac{a}{2}{x^2}({a∈R})$.
(1)當a=1時,求函數(shù)在點(1,-$\frac{1}{2}$)處的切線方程;
(2)若函數(shù)g(x)=f(x)-x有兩個極值點x1,x2,求a的取值范圍.
(3)在(2)的條件下,求證:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}為公差不為0的等差數(shù)列,滿足a1=5,且a2,a9,a30成等比數(shù)列.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足$\frac{1}{_{n+1}}$-$\frac{1}{_{n}}$=an(n∈N*),且b1=$\frac{1}{3}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知$\overrightarrow a=({1,cosx}),\overrightarrow b=({\frac{1}{3},sinx}),x∈({0,π})$,$\overrightarrow a∥\overrightarrow b$
(1)求$\frac{{sin(\frac{π}{2}+x)+cos(\frac{3π}{2}+x)}}{{cos(\frac{5π}{2}-x)+sin(\frac{7π}{2}-x)}}$的值;
(2)求sin2x+sinxcosx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=\frac{1}{2}{x^2}+x-xlnx$的導函數(shù)為f'(x).
(Ⅰ)判斷f(x)的單調(diào)性;
(Ⅱ)若關于x的方程f'(x)=m有兩個實數(shù)根x1,x2(x1<x2),求證:${x_1}{x_2}^2<2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中$A>0,ω>0,0<Φ<\frac{π}{2}$)的圖象與x軸的交點中,相鄰的兩個交點之間的距離為$\frac{π}{2}$,且圖象上的一個最低點為$M(\frac{2π}{3},-2)$,則f(x)的解析式為( 。
A.$f(x)=2sin(2x+\frac{π}{6})$B.$f(x)=2cos(2x+\frac{π}{6})$C.$f(x)=sin(2x+\frac{π}{3})$D.$f(x)=cos(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若4-3a-a2i=a2+4ai,則實數(shù)a=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.等差數(shù)列{an}的前n項的和為Sn,且a6與a2012是方程x2-20x+36=0的兩根,則$\frac{{S}_{2017}}{2017}$+a1009=( 。
A.10B.15C.20D.40

查看答案和解析>>

同步練習冊答案