已知拋物線D的頂點是橢圓C:=1的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線D的方程;
(2)過橢圓C右頂點A的直線l交拋物線D于M、N兩點.
①若直線l的斜率為1,求MN的長;
②是否存在垂直于x軸的直線m被以MA為直徑的圓E所截得的弦長為定值?如果存在,求出m的方程;如果不存在,說明理由.

(1)y2=4x(2)①②存在直線m:x=3滿足題意

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是橢圓上兩點,點的坐標為.
(1)當(dāng)關(guān)于點對稱時,求證:;
(2)當(dāng)直線經(jīng)過點時,求證:不可能為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標原點,點分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點與上頂點,直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點,若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點,且·=0,試判斷直線l與圓C的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(,0),其短軸的一個端點到點F的距離為.
(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B、D是橢圓C上的兩相異點,且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線2x-y-4=0上,求拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓,經(jīng)過橢圓的右焦點F及上頂點B,過圓外一點傾斜角為的直線交橢圓于C,D兩點,

(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)點P在第一象限,且時,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知梯形ABCD中|AB|=2|CD|,點E滿足=λ,雙曲線過C、D、E三點,且以A、B為焦點.當(dāng)≤λ≤時,求雙曲線離心率e的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案