【題目】如圖給出的是計算的值的一個程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( )

A.
B.i>1005
C.
D.i>1006

【答案】D
【解析】,i=1007=1006+1,所以判斷框內(nèi)應(yīng)填入的條件是i>1006,故選D.
【考點精析】通過靈活運用算法的條件語句和程序框圖,掌握“條件”表示判斷的條件;“語句”表示滿足條件時執(zhí)行的操作內(nèi)容,條件不滿足時,結(jié)束程序;算機在執(zhí)行時首先對IF后的條件進行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句;程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別是AB,BC的中點.將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于P.

(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C以原點為中心,左焦點F的坐標是(﹣1,0),長軸長是短軸長的 倍,直線l與橢圓C交于點A與B,且A、B都在x軸上方,滿足∠OFA+∠OFB=180°;

(1)求橢圓C的標準方程;
(2)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn , 其中Sn是數(shù)列{an}的前n項和.
(1)若數(shù)列{an}是首項為 ,公比為﹣ 的等比數(shù)列,求數(shù)列{bn}的通項公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1 , 并寫出數(shù)列{an}的通項公式;
(3)在(2)的條件下,設(shè)cn= , 求證:數(shù)列{cn}中的任意一項總可以表示成該數(shù)列其他兩項之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示:有三根針和套在一根針上的若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n);
①f(3)=
②f(n)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖運行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=(

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , ,則(
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n1}為遞減數(shù)列,{S2n}為遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},a1=a(a∈R),an+1= (n∈N*).
(1)若數(shù)列{an}從第二項起每一項都大于1,求實數(shù)a的取值范圍;
(2)若a=﹣3,記Sn是數(shù)列{an}的前n項和,證明:Sn<n+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣axlnx(a∈R)在x=1處的切線方程為y=bx+1+ (b∈R).
(1)求a,b的值;
(2)證明:f(x)<
(3)若正實數(shù)m,n滿足mn=1,證明: + <2(m+n).

查看答案和解析>>

同步練習冊答案