13.若η服從B(2,p),且Dη=$\frac{4}{9}$,則P(0≤η≤1)=$\frac{5}{9}$或$\frac{8}{9}$.

分析 利用η服從B(2,p),且Dη=$\frac{4}{9}$,求出p,利用P(0≤η≤1)=1-P(η=2)得出結(jié)論.

解答 解:∵η服從B(2,p),且Dη=$\frac{4}{9}$,
∴2p(1-p)=$\frac{4}{9}$,
∴p=$\frac{1}{3}$或p=$\frac{2}{3}$
∴P(0≤η≤1)=1-P(η=2)=1-${C}_{2}^{2}•(\frac{2}{3})^{2}$=$\frac{5}{9}$或P(0≤η≤1)=1-P(η=2)=$\frac{8}{9}$,
故答案為:$\frac{5}{9}$或$\frac{8}{9}$.

點(diǎn)評 本題考查二項(xiàng)分布的概率,本題解題的關(guān)鍵是記住并且能夠應(yīng)用概率公式,能夠代入具體數(shù)值做出概率,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)y=f(x),x∈D,若存在常數(shù)C,對?x1∈D,?唯一的x2∈D,使得$\sqrt{f({x}_{1})f({x}_{2})}$=C,則稱常數(shù)C是函數(shù)f(x)在D上的“倍幾何平均數(shù)”.已知函數(shù)f(x)=2-x,x∈[1,3],則f(x)在[1,3]上的“倍幾何平均數(shù)”是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U={1,2,3,4,5},S?∪,T?U,若S∩T={2},(∁US)∩T={4},(∁US)∩(∁UT)={1,5},則有( 。
A.3∈S∩TB.3∉S,但3∈TC.3∈S∩(∁T)D.3∈(∁S)∩(∁T)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若等邊三角形ABC任一底邊上的高為$\sqrt{3}$,平面上任意一點(diǎn)P滿足$\overrightarrow{CP}$=$\frac{1}{3}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{CA}$,則$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.8sin210°+$\frac{1}{sin10°}$的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx+b(a∈R).
(Ⅰ)若曲線y=f(x)在x=1處的切線的方程為3x-y-3=0,求實(shí)數(shù)a,b的值;
(Ⅱ)若x=1是函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅲ)若-2≤a<0,對任意x1,x2∈(0,2],不等式|f(x1)-f(x2)|≤m|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x3-3x.
(Ⅰ)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)求函數(shù)f(x)在[-1,m](m>-1)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(文)已知 F1、F2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點(diǎn),若雙曲線上存在點(diǎn)A,使∠F1AF2=90°,且|AF1|=3|AF2|,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2分別為雙曲線x2-$\frac{{y}^{2}}{9}$=1的左右焦點(diǎn),若點(diǎn)P在雙曲線上,且∠F1PF2=90°,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=( 。
A.$\sqrt{10}$B.2$\sqrt{10}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案