已知函數(shù)f(x)=sin2x+
3
sinxsin(x+
π
2
).
(Ⅰ)求f(
π
12
)的值;
(Ⅱ)當(dāng)x∈[0,
π
2
]時,求函數(shù)f(x)的最大值和最小值.
考點:三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)直接借助于二倍角公式化簡函數(shù)解析式為:f(x)=sin(2x-
π
6
)+
1
2
,然后,直接求解f(
π
12
)的值;
(Ⅱ)根據(jù)x∈[0,
π
2
],然后,借助于三角函數(shù)的圖象與性質(zhì)進(jìn)行求解最值即可.
解答: 解:(Ⅰ)f(x)=sin2x+
3
sinxsin(x+
π
2
)

=sin2x+
3
sinxcosx

=
1-cos2x
2
+
3
2
sin2x

=
3
2
sin2x-
1
2
cos2x+
1
2

=sin(2x-
π
6
)+
1
2

∴f(x)=sin(2x-
π
6
)+
1
2

f(
π
12
)=
1
2
.                                 
(Ⅱ)當(dāng)x∈[0,
π
2
]
時,
-
π
6
≤2x-
π
6
6

∴當(dāng)2x-
π
6
=-
π
6
時,即x=0時,函數(shù)f(x)取得最小值0;
當(dāng)2x-
π
6
=
π
2
時,即x=
π
3
時,函數(shù)f(x)取得最大值
3
2
點評:本題重點考查了二倍角公式、輔助角公式、三角函數(shù)的圖象與性質(zhì)等知識,屬于中檔題,也是常規(guī)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,現(xiàn)輸入下列四個函數(shù):f(x)=
1
x
,f(x)=log3(x2+1),f(x)=2x+2-x,f(x)=2x-2-x,則輸出的函數(shù)是(  )
A、f(x)=
1
x
B、f(x)=log3(x2+1)
C、f(x)=2x+2-x
D、f(x)=2x-2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+cx+d (a≠0)是R上的奇函數(shù),當(dāng)x=1時,f(x)取得極值-2.
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值.
(3)證明:對任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為角A、B、C的對邊,S為△ABC的面積,且4S=
3
(a2+b2-c2
(1)求角C的大。
(2)f(x)=4sinxcos(x+
π
6
)+1,當(dāng)x=A時,f(x)取得最大值b,試求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為振興旅游業(yè),廣西某旅游局2013年面向國內(nèi)發(fā)行總量為100萬張的優(yōu)惠卡,向省外人士發(fā)行的是優(yōu)惠金卡(簡稱金卡),向省內(nèi)人士發(fā)行的是優(yōu)惠銀卡(簡稱銀卡).某旅游公司組織了一個有36名游客的旅游團到桂林名勝旅游,其中
3
4
是省外游客,其余是省內(nèi)游客,在省外游客中有
1
3
持金卡,在省內(nèi)游客中有
2
3
持銀卡.
(1)在該團的省外游客中隨機采訪4名游客,求接受采訪的4名游客中至少有2人持金卡的概率;
(2)在該團中隨機采訪4名游客,求恰有1人持金卡且持銀卡者不多于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
2
,
3(1-an+1)
1-an
=
2(1+an)
1+an+1
(n∈N*),數(shù)列bn=1-an2(n∈N*),數(shù)列cn=an+12-an2,(n∈N*).
(1)證明數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{cn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+a)-x 的最大值為0,其中a>0.
(1)求a的值;
(2)若對任意x∈[0,+∞) ,有f(x)≥kx2 成立,求實數(shù)k的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C成等差數(shù)列且其對邊分別為a,b,c,已知acosC+ccosA=
3

(Ⅰ)求邊b的值;
(Ⅱ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c為正數(shù),a+b+4c2=1,則
a
+
b
+
2
c的最大值是
 
,此時a+b+c=
 

查看答案和解析>>

同步練習(xí)冊答案