若函數(shù)y=x2+2ax與直線y=2x-4相切,則a=
 
考點:直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:直線與拋物線相切,聯(lián)立方程組使方程只有一解,利用判別式進行判定即可.
解答: 解:∵函數(shù)y=x2+2ax與直線y=2x-4相切,
y=2x-4
y=x2+2ax
,
即x2+(2a-2)x+4=0只有一解
即△=(2a-2)2-4×4=0
解得a=3或a=-1,
故答案為:3或-1.
點評:本題主要考查了直線與拋物線相切的解法,以及一元二次方程只有一解的應(yīng)用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ACB=
π
2
,D、E分別是AB、BB1的中點,且AC=BC=AA1=2.
(1)求證:直線BC1∥平面A1CD;
(2)求平面A1CD與平面A1C1E所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a-bcos3x(b<0)的最大值為
3
2
,最小值為-
1
2
,則y=sin(4a-b)πx的周期為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點(-1,m)在直線x+2y-1=0的上方,則y=
m2+1
m-1
(  )
A、有最小值2+2
2
B、有最大值2+2
2
C、有最大值2-2
2
D、有最小值2
2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=-
1
b
eax(a>0,b>0)的圖象在x=0處的切線與圓x2+y2=1相切,則a+b的最大值是( 。
A、4
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
tan2x-2tanx+2
的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(3x+
4
)的圖象的一條對稱軸是( 。
A、x=-
π
12
B、x=-
π
4
C、x=
π
8
D、x=-
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的一個頂點為(0,-1),焦點在x軸上,右焦點到直線x-y+1=0的距離為
2

(1)求橢圓C的方程;
(2)過點F(1,0)作直線l與橢圓C交于不同的兩點A、B,
FA
=λ
FB
,T(2,0),λ∈[2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f′(x)>f(x)恒成立,若x1<x2,則ex1f(x2)與ex2f(x1)的大小關(guān)系為(  )
A、ex1f(x2)>ex2f(x1
B、ex1f(x2)<ex2f(x1
C、ex1f(x2)=ex2f(x1
D、ex1f(x2)與ex2f(x1)的大小關(guān)系不確定

查看答案和解析>>

同步練習冊答案