【題目】在平面直角坐標(biāo)系中,圓O交x軸于點(diǎn)F1,F2,交y軸于點(diǎn)B1,B2.以B1,B2為頂點(diǎn),F1,F2分別為左、右焦點(diǎn)的橢圓E,恰好經(jīng)過(guò)點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)經(jīng)過(guò)點(diǎn)(﹣2,0)的直線l與橢圓E交于M,N兩點(diǎn),求△F2MN面積的最大值.
【答案】(1).(2)最大值.
【解析】
(1)根據(jù)題意分析橢圓中基本量的關(guān)系,再代入求解即可.
(2)設(shè)直線,再聯(lián)立直線與橢圓的方程,代入韋達(dá)定理求得弦長(zhǎng)的解析式,再求解到的距離,進(jìn)而表達(dá)出面積的表達(dá)式,換元后利用二次不等式的方法求最值即可.
(1)由已知可得,橢圓E的焦點(diǎn)在x軸上.
設(shè)橢圓E的標(biāo)準(zhǔn)方程為,焦距為2c,則b=c,
∴a2=b2+c2=2b2,∴橢圓E的標(biāo)準(zhǔn)方程為.
又橢圓E過(guò)點(diǎn),∴,解得b2=1.
∴橢圓E的標(biāo)準(zhǔn)方程為.
(2)由于點(diǎn)(﹣2,0)在橢圓E外,所以直線l的斜率存在.
設(shè)直線l的斜率為k,則直線l:y=k(x+2),設(shè)M(x1,y1),N(x2,y2).
由消去y得,(1+2k2)x2+8k2x+8k2﹣2=0.
由△>0得,從而,
∴.
∵點(diǎn)F2(1,0)到直線l的距離,
∴△F2MN的面積為.
令1+2k2=t,則t∈[1,2),
∴,
當(dāng)即時(shí),S有最大值,,此時(shí).
所以,當(dāng)直線l的斜率為時(shí),可使△F2MN的面積最大,其最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是( )
A.與具有正線性相關(guān)關(guān)系
B.回歸直線過(guò)樣本的中心點(diǎn)
C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,過(guò)作垂直于軸的直線交該橢圓于,兩點(diǎn),直線的斜率為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的外接圓在處的切線與橢圓交另一點(diǎn)于,且的面積為,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
如圖,已知四棱錐,底面為菱形,,
, 平面, 分別是的中點(diǎn)。
(1)證明: ;
(2)若為上的動(dòng)點(diǎn),與平面所成最大角
的正切值為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四面體ABCD中AB⊥面BCD,BC⊥DC,BE⊥AD垂足為E,F為CD中點(diǎn),AB=BD=2,CD=1.
(1)求證:AC∥面BEF;
(2)求點(diǎn)B到面ACD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com