10.化簡:$\frac{{sin(\frac{π}{2}-α)sin(2π+α)cos(-π-α)}}{{sin(\frac{3π}{2}-α)cos(3π-α)cos(\frac{π}{2}+α)}}$.

分析 根據(jù)誘導(dǎo)公式化簡計(jì)算即可.

解答 解:原式=$\frac{cosαsinα•(-cosα)}{-cosα•(-cosα)(-sinα)}$=1.

點(diǎn)評 本題考查了誘導(dǎo)公式的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓 M與圓N:(x-$\frac{5}{3}$)2+(y+$\frac{5}{3}$)2=r2關(guān)于直線y=x對稱,且點(diǎn)D(-$\frac{5}{3}$,$\frac{1}{3}$)在圓M上.
(1)判斷圓M與圓N的公切線的條數(shù);
(2)設(shè)P為圓M上任意一點(diǎn),A(-1,$\frac{5}{3}$),B(1,$\frac{5}{3}$),P,A,B三點(diǎn)不共線,PG為∠APB的平分線,且交AB于G,求證:△PBG與△APG的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\overrightarrow{c}$,$\overrightarrowjfk1ivb$為單位向量,且夾角為60°,若$\overrightarrow{a}$=$\overrightarrow{c}$+3$\overrightarrowbxhv1ur$,$\overrightarrow$=2$\overrightarrow{c}$,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為$\frac{{5\sqrt{13}}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知雙曲線C:mx2+ny2=1(mn<0)的一條漸近線與圓x2+y2-6x-2y+9=0相切,則C的離心率等于( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{5}{3}$或$\frac{25}{16}$D.$\frac{5}{3}$或$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)△ABC三個(gè)內(nèi)角A,B,C所對的邊分別為a,b,c,若a2sinC=4sinA,(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),則△ABC的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,如圖所示作PD⊥x軸,且$\overrightarrow{DM}$=λ$\overrightarrow{DP}$(0<λ<1)
(1)求點(diǎn)M的軌跡方程C;
(2)過方程C對應(yīng)曲線的右焦點(diǎn)作斜率為1的直線lAB與曲線C交于E,F(xiàn)兩點(diǎn),曲線C上是否存在點(diǎn)H使得△EFH的重心為坐標(biāo)原點(diǎn)?若存在,求出λ;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)$A({2\sqrt{2},2})$在拋物線C:x2=2py(p>0)上.
(1)求拋物線C的方程;
(2)設(shè)定點(diǎn)D(0,m),過D作直線y=kx+m(k>0)與拋物線C交于M(x1,y1),N(x2,y2)(y1<y2)兩點(diǎn),連接ON(O為坐標(biāo)原點(diǎn)),過點(diǎn)M作垂直于x軸的直線交ON于點(diǎn)G.
①證明點(diǎn)G在一條定直線上;
②求四邊形ODMG的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對一批零件的長度(單位:mm)進(jìn)行抽樣檢測,檢測結(jié)果的頻率分布直方圖如圖所示.根據(jù)標(biāo)準(zhǔn),零件長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.
(Ⅰ)用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取一件,求其為二等品的概率;
(Ⅱ)已知檢測結(jié)果為一等品的有6件,現(xiàn)隨機(jī)從三等品中取兩件,求取出的兩件產(chǎn)品中恰有1件的長度在區(qū)間[30,35)上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,-1),點(diǎn)P(x,y)的坐標(biāo)滿足不等式組$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,若$z=\overrightarrow{OP}•\overrightarrow{OA}$的最大值為7,則實(shí)數(shù)a的值為( 。
A.-7B.-1C.1D.7

查看答案和解析>>

同步練習(xí)冊答案