11.對于等差數(shù)列{an}有如下命題:“若{an}是等差數(shù)列,a1=0,s、t是互不相等的正整數(shù),則有(s-1)at-(t-1)as=0”.類比此命題,給出等比數(shù)列{bn}相應(yīng)的一個正確命題是:“若{bn}是等比數(shù)列,b1=1,s、t是互不相等的正整數(shù),則有$\frac{{_{t}}^{s-1}}{{_{s}}^{t-1}}$=1”.

分析 仔細(xì)分析題干中給出的不等式的結(jié)論“若{an}是等差數(shù)列,且a1=0,s、t是互不相等的正整數(shù),則(s-1)at-(t-1)as=0”的規(guī)律,結(jié)合等差數(shù)列與等比數(shù)列具有類比性,且等差數(shù)列與和差有關(guān),等比數(shù)列與積商有關(guān),因此等比數(shù)列類比到等差數(shù)列的$\frac{{_{t}}^{s-1}}{{_{s}}^{t-1}}$=1成立.

解答 解:等差數(shù)列中的bn和am可以類比等比數(shù)列中的bn和am,
等差數(shù)列中的(s-1)at可以類比等比數(shù)列中的at s-1
等差數(shù)列中的“差”可以類比等比數(shù)列中的“商”.
等差數(shù)列中的“a1=0”可以類比等比數(shù)列中的“b1=1”.
故$\frac{{_{t}}^{s-1}}{{_{s}}^{t-1}}$=1.
故答案為:$\frac{{_{t}}^{s-1}}{{_{s}}^{t-1}}$=1.

點評 本題主要考查等差數(shù)列類比到等比數(shù)列的類比推理,類比推理一般步驟:①找出等差數(shù)列、等比數(shù)列之間的相似性或者一致性.②用等差數(shù)列的性質(zhì)去推測物等比數(shù)列的性質(zhì),得出一個明確的命題(或猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.二項展開式(2x-1)10中x的奇次冪項的系數(shù)之和為$\frac{1-{3}^{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a,b,m∈R,則下面推理中正確的是(  )
A.a>b⇒$\frac{a}$>1B.a>b⇒am2>bm2
C.a3>b3,ab>0⇒$\frac{1}{a}$<$\frac{1}$D.a2>b2,ab>0⇒$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知Sn為數(shù)列{an}的前n項和,若an(4+cosnπ)=n(2-cosnπ),則S20=(  )
A.31B.122C.324D.484

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某人從甲地去乙地共走了500m,途中要過一條寬為x m的河流,他不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里,則能找到,已知該物品能找到的概率為$\frac{4}{5}$,則河寬為( 。
A.80 mB.100 mC.50 mD.40 m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=lg(mx2+mx+1),若此函數(shù)的定義域為R,則實數(shù)m的取值范圍是[0,4);若此函數(shù)的值域為R,則實數(shù)m的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)角α的終邊經(jīng)過點(-6,-8),則sinα-cosα的值是(  )
A.-$\frac{7}{5}$B.$\frac{7}{5}$C.$\frac{1}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某工廠制造甲、乙兩種產(chǎn)品,已知制造1t甲產(chǎn)品要用煤9t,電力4kW,勞動力(按工作日計算)3個;制造1t乙產(chǎn)品要用煤4t,電力5kW,勞動力10個.又知制成甲產(chǎn)品1t可獲利7萬元,制成乙產(chǎn)品1t可獲利12萬元.現(xiàn)在此工廠只有煤360t,電力200kW,勞動力300個,在這種條件下應(yīng)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸能獲得最大經(jīng)濟效益?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知二次函數(shù)f(x)=ax2+bx+c,若f(0)=f(6)<f(7),則f(x)在( 。
A.(-∞,0)上是增函數(shù)B.(0,+∞)上是增函數(shù)C.(-∞,3)上是增函數(shù)D.(3,+∞)上是增函數(shù)

查看答案和解析>>

同步練習(xí)冊答案