(理)已知函數(shù)f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值與最小值;
(Ⅱ)若f(x)<4-At對(duì)于任意的x∈[1,3],t∈[0,2]恒成立,求實(shí)數(shù)A的取值范圍.
(Ⅰ)求f(x)的最大值為最小值為;(Ⅱ)A<.
【解析】
試題分析:(1)直接求出函數(shù)的導(dǎo)數(shù),通過(guò)導(dǎo)數(shù)為0,求出函數(shù)的極值點(diǎn),判斷函數(shù)的單調(diào)性,利用最值定理求出f(x)的最大值與最小值;
(2)利用(1)的結(jié)論,f(x)<4-At于任意的x∈[1,3],t∈[0,2]恒成立,轉(zhuǎn)化為4-At>對(duì)任意t∈[0,2]恒成立,通過(guò) 求實(shí)數(shù)A的取值范圍.
試題解析:(1)因?yàn)楹瘮?shù)f(x)=﹣lnx,
所以f′(x)=,令f′(x)=0得x=±2,
因?yàn)閤∈[1,3],
當(dāng)1<x<2時(shí) f′(x)<0;當(dāng)2<x<3時(shí),f′(x)>0;
∴f(x)在(1,2)上單調(diào)減函數(shù),在(2,3)上單調(diào)增函數(shù),
∴f(x)在x=2處取得極小值f(2)=﹣ln2;
又f(1)=,f(3)=,
∵ln3>1∴
∴f(1)>f(3),
∴x=1時(shí) f(x)的最大值為,
x=2時(shí)函數(shù)取得最小值為﹣ln2.
(2)由(1)知當(dāng)x∈[1,3]時(shí),f(x),
故對(duì)任意x∈[1,3],f(x)<4﹣At恒成立,
只要4﹣At>對(duì)任意t∈[0,2]恒成立,即At恒成立
記 g(t)=At,t∈[0,2]
∴,解得A,
∴實(shí)數(shù)A的取值范圍是(﹣∞,).
考點(diǎn):1、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;2、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ln(2-x2) |
|x+2|-2 |
AB |
AD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
sin2x-(a-4)(sinx-cosx)+a |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ln(2-x2) | |x+2|-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
1-x |
1 |
n |
2 |
n |
n-1 |
n |
1 |
a1 |
1 |
a2 |
1 |
an |
sinα | ||
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com