【題目】如圖,在三棱柱中,為的重心,.
(1)求證:平面;
(2)若側(cè)面底面,,,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)連接,并延長,交于點,過作,交于點,分別連接,.為是的重心,所以,又,所以,所以,從而平面;(2)以為原點,分別以,,為軸,軸,軸建立空間直角坐標系,利用直線的方向向量與平面的法向量,計算得線面角的正弦值為.
試題解析:
(1)連接,并延長,交于點,過作,交于點,分別連接,.因為是的重心,所以.
又,所以.
又據(jù)三棱柱性質(zhì)知,
所以.
又因為,,
所以.
又,,,
所以.
又因為,,
所以平面平面
又因為,
所以平面
(2)連結(jié).
因為,,,
所以,
所以,所以.
因為側(cè)面底面,側(cè)面底面,,
所以平面.
因為,,所以是等邊三角形,
所以.
以為原點,分別以,,為軸,軸,軸建立空間直角坐標系,
則,,,,,
所以,,,,
所以.
設平面的一個法向量為,則
所以
令,得,
所以.
所以.即直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函數(shù)f(x)的值域.
(2) 當f(x)在區(qū)間上為增函數(shù)時,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡稱)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照大小分為六級,為優(yōu);為輕度污染;為中度污染;為重度污染;為嚴重污染.一環(huán)保人士記錄去年某地某月10天的的莖葉圖如右.
(1)利用該樣本估計該地本月空氣質(zhì)量優(yōu)良()的天數(shù);(按這個月總共30天計算)
(2)將頻率視為概率,從本月中隨機抽取3天,記空氣質(zhì)量優(yōu)良的天數(shù)為,求的概率分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列正確命題有__________.
①“”是“”的充分不必要條件
②如果命題“”為假命題,則中至多有一個為真命題
③設,若,則的最小值為
④函數(shù)在上存在,使,則a的取值范圍或.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在研究性學習中,關于三角形與三角函數(shù)知識的應用(約定三內(nèi)角所對的邊分別是)得出如下一些結(jié)論:
(1)若是鈍角三角形,則;
(2)若是銳角三角形,則;
(3)在三角形中,若,則
(4)在中,若,則
其中錯誤命題的個數(shù)是 ( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知長方形中, , , 為的中點.將沿折起,使得平面平面.
(1)求證: ;
(2)若點是線段上的一動點,問點在何位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五棱錐中,平面平面,且.
(1)已知點在線段上,確定的位置,使得平面;
(2)點分別在線段上,若沿直線將四邊形向上翻折,與恰好重合,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在研究色盲與性別的關系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520個女性中6人患色盲.
(Ⅰ)根據(jù)題中數(shù)據(jù)建立一個的列聯(lián)表;
(Ⅱ)在犯錯誤的概率不超過0.001的前提下,能否認為“性別與患色盲有關系”?
附:參考公式,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com