(本小題滿分12分)
已知函數(shù)的兩個(gè)不同的零點(diǎn)為
(Ⅰ)證明:;
(Ⅱ)證明:;
(Ⅲ)若滿足,試求的取值范圍.
解:(Ⅰ)由題意知,是關(guān)于的一元二次方程的實(shí)數(shù)根,
∴,. ∴
∴①----------3分
(Ⅱ)證明:由于關(guān)于一元二次方程有兩個(gè)不等實(shí)數(shù)根,故有
且 ∴----------4分
∴---------------5分
即得證。-----------6分
(Ⅲ)解:由≤≤10,由①得
。∴。 ∴≤≤10,
≤≤----------------7分
∴+()+,----8分
當(dāng)時(shí),取最大值為;
當(dāng)或時(shí),取最小值;-------------10分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c5/b/xha9n1.gif" style="vertical-align:middle;" />,故的取值范圍是-------------------------12分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=是奇函數(shù)(a,b,c都是整數(shù))且f(1)=2,f(2)<3
(1)求a,b,c的值;
(2)當(dāng)x<0,f(x)的單調(diào)性如何?用單調(diào)性定義證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(理)(本小題滿分12分)已知y=f(x)是偶函數(shù),當(dāng)x>0時(shí),,
且當(dāng)時(shí),恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點(diǎn);
(3)若函數(shù)的最小值為-4,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
設(shè)與分別是實(shí)系數(shù)方程和的一個(gè)根,且 ,求證:方程有僅有一根介于和之間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是定義在上的偶函數(shù),且時(shí),。
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的值域;
(Ⅲ)設(shè)函數(shù)的定義域?yàn)榧?sub>,若,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:已知函數(shù)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱(chēng)函數(shù)在[m,n] (m<n)上具有“DK”性質(zhì).
(1)判斷函數(shù)在[1,2]上是否具有“DK”性質(zhì),說(shuō)明理由;
(2)若在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com