20.若函數(shù)f(x)=(ex+ae-x)sinx為奇函數(shù),則a=1.

分析 由題意得(ex+ae-x)sinx=-sin(-x)(e-x+aex),從而化簡求得.

解答 解:∵函數(shù)f(x)=(ex+ae-x)sinx為奇函數(shù),
∴(ex+ae-x)sinx=-sin(-x)(e-x+aex),
∴ex+ae-x=e-x+aex,
故a=1.
故答案為:1

點評 本題考查了函數(shù)的奇偶性的判斷與應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知最小正周期為2的函數(shù)y=f(x),當(dāng)x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)(x∈R)的圖象與y=|log5x|的圖象的交點個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=loga(2x-3)-4(a>0且a≠1)的圖象恒過定點( 。
A.(1,0)B.(1,-4)C.(2,0)D.(2,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,過函數(shù)f(x)=logcx(c>1)的圖象上的兩點A,B作x軸的垂線,垂足分別為M(a,0),N(b,0)(b>a>1),線段BN與函數(shù)g(x)=logmx(m>c>1)的圖象交于點C,且AC與x軸平行.
(1)當(dāng)a=2,b=4,c=3時,求實數(shù)m的值;
(2)當(dāng)b=a2時,求$\frac{m}$-$\frac{2c}{a}$的最小值;
(3)已知h(x)=ax,φ(x)=bx,若x1,x2為區(qū)間(a,b)任意兩個變量,且x1<x2,求證:h(f(x2))<φ(f(x1))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.計算sin46°•cos16°-cos314°•sin16°=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖是一個棱錐的三視圖,則該棱錐的體積為( 。
A.12B.4C.6D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.工人工資y(元)與勞動生產(chǎn)率x(千元)的相關(guān)關(guān)系的回歸直線方程為$\widehat{y}$=50+80x,下列判斷正確的是(  )
A.勞動生產(chǎn)率為1 000元時,工人工資為130元
B.勞動生產(chǎn)率提高1 000元時,工人工資平均提高80元
C.勞動生產(chǎn)率提高1 000元時,工人工資平均提高130元
D.當(dāng)月工資為250元時,勞動生產(chǎn)率為2 000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx,函數(shù)g(x)=$\frac{1}{3}$bx3-bx,a∈R且b≠0.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,且對任意的x1∈(1,2),總存在x2∈(1,2),使f(x1)+g(x2)=0成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:x-$\sqrt{3}$y+3=0與橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1交于A,B兩點,過A,B分別作l的垂線與x軸交于C,D兩點,則|CD|=( 。
A.$\sqrt{3}$B.$\frac{16}{13}$C.$\frac{32}{13}$D.$\frac{30}{13}$

查看答案和解析>>

同步練習(xí)冊答案