【題目】在平面直角坐標(biāo)系,已知曲線的參數(shù)方程為,(為參數(shù)),點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系直線的極坐標(biāo)方程為.

(1)試判斷點(diǎn)是否在直線,并說明理由;

(2)設(shè)直線與曲線交于點(diǎn),,的值.

【答案】(1)見解析;(2)

【解析】

(1)把直線的極坐標(biāo)方程為化為直角坐標(biāo)方程,代入檢驗(yàn)即可;

(2)把曲線的參數(shù)方程化為普通方程,再把直線l的參數(shù)方程代入普通方程可得,借助韋達(dá)定理可得結(jié)果.

(1)由,

即直線的直角坐標(biāo)方程為,

經(jīng)檢驗(yàn)滿足方程,

所以點(diǎn)在直線上.

(2)曲線的參數(shù)方程為為參數(shù)),

所以曲線的普通方程為.

由(1)可得直線的參數(shù)方程為為參數(shù)),

將參數(shù)方程代入曲線,

設(shè),對應(yīng)的參數(shù)為,則,,

所以,

所以的值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交橢圓于兩點(diǎn),軸上的點(diǎn),若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的2個(gè)焦點(diǎn)與1個(gè)短軸端點(diǎn)為頂點(diǎn)的三角形的面積為2。

(1)求橢圓的方程;

(2)如圖,斜率為k的直線l過橢圓的右焦點(diǎn)F,且與橢圓交與A,B兩點(diǎn),以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序號

1

2

3

4

5

6

7

8

9

10

工業(yè)增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

5.5

20.6

82.5

211.52

129.6

(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對工業(yè)增加值(萬億元)與年份序號的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計(jì)算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).

(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);

(3)預(yù)測到哪一年的工業(yè)增加值能突破30萬億元大關(guān).

附:樣本 的相關(guān)系數(shù),

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正整數(shù)數(shù)列滿足,試求通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)20個(gè)兩兩不同的正整數(shù)且集合中有201個(gè)不同的元素.求集合中不同元素個(gè)數(shù)的最小可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)國家“陽光體育運(yùn)動”的號召,某學(xué)校在了解到學(xué)生的實(shí)際運(yùn)動情況后,發(fā)起以“走出教室,走到操場,走到陽光”為口號的課外活動倡議。為調(diào)查該校學(xué)生每周平均體育運(yùn)動時(shí)間的情況,從高一高二基礎(chǔ)年級與高三三個(gè)年級學(xué)生中按照4:3:3的比例分層抽樣,收集300位學(xué)生每周平均體育運(yùn)動時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),得到如圖所示的頻率分布直方圖。

(1)據(jù)圖估計(jì)該校學(xué)生每周平均體育運(yùn)動時(shí)間.并估計(jì)高一年級每周平均體育運(yùn)動時(shí)間不足4小時(shí)的人數(shù);

(2)規(guī)定每周平均體育運(yùn)動時(shí)間不少于6小時(shí)記為“優(yōu)秀”,否則為“非優(yōu)秀”,在樣本數(shù)據(jù)中,有30位高三學(xué)生的每周平均體育運(yùn)動時(shí)間不少于6小時(shí),請完成下列列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時(shí)間是否“優(yōu)秀”與年級有關(guān)”.

基礎(chǔ)年級

高三

合計(jì)

優(yōu)秀

非優(yōu)秀

合計(jì)

300

P(K2k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

附:K2,na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201912月份,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了增強(qiáng)居民防護(hù)意識,增加居民防護(hù)知識,某居委會利用網(wǎng)絡(luò)舉辦社區(qū)線上預(yù)防新冠肺炎知識答題比賽,所有居民都參與了防護(hù)知識網(wǎng)上答卷,最終甲、乙兩人得分最高進(jìn)入決賽,該社區(qū)設(shè)計(jì)了一個(gè)決賽方案:①甲、乙兩人各自從個(gè)問題中隨機(jī)抽個(gè).已知這個(gè)問題中,甲能正確回答其中的個(gè),而乙能正確回答每個(gè)問題的概率均為,甲、乙兩人對每個(gè)問題的回答相互獨(dú)立、互不影響;②答對題目個(gè)數(shù)多的人獲勝,若兩人答對題目數(shù)相同,則由乙再從剩下的道題中選一道作答,答對則判乙勝,答錯(cuò)則判甲勝.

1)求甲、乙兩人共答對個(gè)問題的概率;

2)試判斷甲、乙誰更有可能獲勝?并說明理由;

3)求乙答對題目數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)產(chǎn)值在2008年~2017年的年增量(即當(dāng)年產(chǎn)值比前一年產(chǎn)值增加的量)統(tǒng)計(jì)圖如圖所示(單位:萬元),下列說法正確的是( )

A. 2009年產(chǎn)值比2008年產(chǎn)值少

B. 從2011年到2015年,產(chǎn)值年增量逐年減少

C. 產(chǎn)值年增量的增量最大的是2017年

D. 2016年的產(chǎn)值年增長率可能比2012年的產(chǎn)值年增長率低

查看答案和解析>>

同步練習(xí)冊答案