【題目】化簡(jiǎn)

1

2

【答案】(1) ;(2) .

【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1

(2)結(jié)合三角函數(shù)的性質(zhì)可得三角函數(shù)式的值為

試題解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

點(diǎn)睛:三角函數(shù)式的化簡(jiǎn)要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式 ;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結(jié)構(gòu)特征,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如遇到分式要通分等.

型】解答
結(jié)束】
18

【題目】平面內(nèi)給定三個(gè)向量

1)求

2)求滿足的實(shí)數(shù).

3)若,求實(shí)數(shù).

【答案】(1) ;(2) ;(3) .

【解析】試題分析:(1)由向量的線性運(yùn)算法則即可算出;(2)根據(jù)向量相等即可求出m、n的值;

(3)若已知向量=(a,b)、=(c,d),則ad﹣bc=0,計(jì)算出即可.

試題解析:

(1)

;

(2)

解之得

(3)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解該校學(xué)生對(duì)于某項(xiàng)運(yùn)動(dòng)的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下2×2的列聯(lián)表:

喜歡該項(xiàng)運(yùn)動(dòng)

不喜歡該項(xiàng)運(yùn)動(dòng)

總計(jì)

40

20

60

20

30

50

總計(jì)

60

50

110

由公式K2= ,算得K2≈7.61
附表:

p(K2≥k0

0.025

0.01

0.005

k0

5.024

6.635

7.879

參照附表,以下結(jié)論正確是( )
A.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an , 求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點(diǎn),D為棱CC1上任一點(diǎn).

(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時(shí)的最大值.

【答案】(1) ;(2)答案見解析.

【解析】試題分析:(1)利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)函數(shù)解析式后,分三種情況:小于﹣1時(shí)大于﹣1而小于1時(shí)大于1時(shí),根據(jù)二次函數(shù)求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個(gè)解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

試題解析:

(1)由

.這里

①若則當(dāng)時(shí),

②若當(dāng)時(shí),

③若則當(dāng)時(shí),

因此

(2)

①若,則有,矛盾;

②若,則有(舍).

時(shí), 此時(shí)

當(dāng)時(shí), 取得最大值為5.

點(diǎn)睛:二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點(diǎn)或二次函數(shù)圖象的頂點(diǎn)處取到;常見題型有:(1)軸固定區(qū)間也固定;(2)軸動(dòng)(軸含參數(shù)),區(qū)間固定;(3)軸固定,區(qū)間動(dòng)(區(qū)間含參數(shù)). 找最值的關(guān)鍵是:(1)圖象的開口方向;(2)對(duì)稱軸與區(qū)間的位置關(guān)系;(3)結(jié)合圖象及單調(diào)性確定函數(shù)最值.

型】填空
結(jié)束】
21

【題目】已知兩個(gè)不共線的向量的夾角為,且為正實(shí)數(shù).

1)若垂直,求

2)若,求的最小值及對(duì)應(yīng)的的值,并指出此時(shí)向量的位置關(guān)系.

3)若為銳角,對(duì)于正實(shí)數(shù),關(guān)于的方程有兩個(gè)不同的正實(shí)數(shù)解,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)6cos2sinωx3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.

(1)ω的值及函數(shù)f(x)的值域;

(2)f(x0),且x0∈(),求f(x01)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC中角A,B,C的對(duì)邊,函數(shù) 且f(A)=5.
(1)求角A的大;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、、的對(duì)邊分別為、,向量,

,且.

1)求銳角B的大。

2)在(1)的條件下,如果b=2,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且滿足bcosC+ c=a.
(1)求△ABC的內(nèi)角B的大;
(2)若△ABC的面積S= b2 , 試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案