已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足f(x)=2xf′(1)+x2,則f′(1)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:將f′(1)看出常數(shù)利用導(dǎo)數(shù)的運(yùn)算法則求出f′(x),令x=1即可求出f′(1).
解答: 解:f′(x)=2f′(1)+2x
令x=1得f′(1)=2f′(1)+2
∴f′(1)=-2
故答案為:-2
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)算法則、考查通過賦值求出導(dǎo)函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)a,b滿足a+b=1,求ab2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(k)=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
(k∈N*),那么f(k+1)-f(k)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|x+2012|+|x+2011|+…+|x+1|+|x-1|+…+|x-2011|+|x-2012|(x∈R),且f(a2-3a+2)=f(a-1),則滿足條件的所有整數(shù)a的和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
①直線l的斜率k∈[-1,1],則直線l的傾斜角α∈[-
π
4
π
4
];
②直線l:y=kx+1與以A(-1,5)、B(4,-2)兩點(diǎn)為端點(diǎn)的線段相交,則k≤-4或k≥-
3
4
;
③如果實(shí)數(shù)x,y滿足方程(x-2)2+y2=3,那么
y
x
的最大值為
3

④直線y=kx+1與橢圓
x2
5
+
y2
m
=1恒有公共點(diǎn),則m的取值范圍是m≥1.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和為Sn,且S5=2,S10=6,則a16+a17+a18+a19+a20=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班某天要安排語文、數(shù)學(xué)、政治、英語、體育、藝術(shù)6節(jié)課,要求數(shù)學(xué)課排在前3節(jié),體育課不排在第1節(jié),則不同的排法種數(shù)為
 
.(以數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x3+x2+x+m.
(1)當(dāng)m=0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=2n-1,則數(shù)據(jù)a1,a2,a3,a4,a5的標(biāo)準(zhǔn)差為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案