下列函數(shù)中既是奇函數(shù)又是上的增函數(shù)的是(   )
A.B.C.D.
D

試題分析:A、B的定義域為,D的定義域為,故A、B、D選項的定義域均關(guān)于原點對稱,而C的定義域為不關(guān)于原點對稱,C中的函數(shù)沒有奇偶性,故先排除C;對于A,,該函數(shù)為偶函數(shù),不符合;對B,,該函數(shù)為奇函數(shù),而都是減函數(shù),故單調(diào)遞減,不符合要求;排除了選項A、B、C,故只能選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)的定義域是,對于任意的,有,且當(dāng)時,.
(1)求的值;
(2)判斷函數(shù)的奇偶性;
(3)用函數(shù)單調(diào)性的定義證明函數(shù)為增函數(shù);
(4)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)為偶函數(shù),求的值;
(Ⅱ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)滿足:對任意,都有成立,且時,
(1)求的值,并證明:當(dāng)時,;
(2)判斷的單調(diào)性并加以證明;
(3)若上遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)g(x)=2x-,若f(x)=則函數(shù)f(x)在定義域內(nèi)(  )
A.有最小值,但無最大值
B.有最大值,但無最小值
C.既有最大值,又有最小值
D.既無最大值,又無最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實數(shù)m的取值范圍是(  )
A.B.
C.(-∞,2]D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在R上的函數(shù)yf(x)滿足條件f=-f(x),且函數(shù)yf為奇函數(shù),給出以下四個命題:
(1)函數(shù)f(x)是周期函數(shù);
(2)函數(shù)f(x)的圖象關(guān)于點對稱;
(3)函數(shù)f(x)為R上的偶函數(shù);
(4)函數(shù)f(x)為R上的單調(diào)函數(shù).
其中真命題的序號為________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),若對于任意,當(dāng)時,總有,則區(qū)間有可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若實數(shù)滿足的最小值為           .

查看答案和解析>>

同步練習(xí)冊答案