如圖,CD是一座鐵塔,線段AB和塔底D在同一水平地面上,在A,B兩點測得塔頂C的仰角分別為60°和45°,又測得AB=24m∠ADB=30°,則此鐵塔的高度為( 。﹎.
分析:先利用銳角三角函數(shù)定義確定AD,BD的長,再利用余弦定理,即可求得鐵塔的高度.
解答:解:設(shè)鐵塔的高度為hm,則
∵A,B兩點測得塔頂C的仰角分別為60°和45°,
∴AD=CDtan(90°-60°)=
3
3
hm,BD=hm,
在△ABD中,AB=24m,∠ADB=30°,
∴由余弦定理可得242=
1
3
h2+h2-2×
3
3
h×h×cos30°,
整理得:h2=3×242,
∴h=24
3
m.
故選A
點評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,CD是一座鐵塔,線段AB和塔底D在同一水平地面上,在A,B兩點測得塔頂C的仰角分別為60°和45°,又測得AB=24m,∠ADB=30°,則此鐵塔的高度為
24
3
24
3
 m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,CD是一座鐵塔,線段AB和塔底D在同一水平地面上,在A,B兩點測得塔頂C的仰角分別為30°和45°,又測得AB=12m,∠ADB=30°則此鐵塔的高度為
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

如圖,CD是一座鐵塔,線段AB和塔底D在同一水平地面上,在A,B兩點測得塔頂C的仰角分別為60°和45°,又測得AB=24m,∠ADB=30°,則此鐵塔的高度為     m.

查看答案和解析>>

同步練習(xí)冊答案