(理科)設(shè)x,y∈R,x≥0,y≤0且x2+y2=4,則
2
0
ydx
=
分析:由條件先求出函數(shù)y的不等式,利用積分的幾何意義求積分即可.
解答:解:∵x≥0,y≤0且x2+y2=4,
∴y=-
4-x2
,(x≥0),
∴函數(shù)y對(duì)應(yīng)的圖象為
1
4
圓周,對(duì)應(yīng)的面積為S=
1
4
•π×22

則根據(jù)積分幾何意義知
2
0
ydx
=-S=-π,
故答案為:-π.
點(diǎn)評(píng):本題主要考查定積分的應(yīng)用,利用積分的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知函數(shù)f(x)=
a•2x+a2-22x-1
(x∈R,x≠0)
,其中a為常數(shù),且a<0.
(1)若f(x)是奇函數(shù),求a的取值集合A;
(2)當(dāng)a=-1時(shí),設(shè)f(x)的反函數(shù)為f-1(x),且函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于y=x對(duì)稱,求g(1)的取值集合B;
(3)對(duì)于問(wèn)題(1)(2)中的A、B,當(dāng)a∈{a|a<0,a∉A,a∉B}時(shí),不等式x2-10x+9<a(x-4)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)兩定點(diǎn)F1(0,-
5
)、F2(0,
5
)
,動(dòng)點(diǎn)P滿足條件:|
PF1
|-|
PF2
|=4
,設(shè)點(diǎn)P的軌跡是曲線E,O為坐標(biāo)原點(diǎn).
(I)求曲線E的方程;
(II)若直線y=k(x+1)與曲線E相交于兩不同點(diǎn)Q、R,求
OQ
OR
的取值范圍;
(III)(文科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,記xA、xB分別為A、B兩點(diǎn)的橫坐標(biāo),求|xA•xB|的最小值.
(理科做)設(shè)A、B兩點(diǎn)分別在直線y=±2x上,若
AP
PB
(λ∈[
1
2
,3])
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆江蘇省泰州中學(xué)高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(文科)(本題滿分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(,2).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合
(理科)(本題滿分14分)已知函數(shù)f(x)=ex-kx,x∈R
(Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間
(Ⅱ)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(文科)(本題滿分14分)設(shè)函數(shù)f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(,2).

    (Ⅰ)求實(shí)數(shù)m的值;

    (Ⅱ)求函數(shù)f(x)的最小值及此時(shí)x值的集合

(理科)(本題滿分14分)已知函數(shù)f(x)=ex-kx,x∈R

    (Ⅰ)若k=e,試確定函數(shù)f(x)的單調(diào)區(qū)間

    (Ⅱ)若k>0,且對(duì)于任意x∈R,f(|x|)>0恒成立,試確定實(shí)數(shù)k的取值范圍

 

查看答案和解析>>

同步練習(xí)冊(cè)答案