5.已知i為虛數(shù)單位,z+zi=1+5i,則z=(  )
A.2+3iB.2-3iC.3-2iD.3+2i

分析 設(shè)z=a+bi,則z+zi=a+bi+ai+bi2=(a-b)+(a+b)i=1+5i,由此列出方程組,能求出結(jié)果.

解答 解:設(shè)z=a+bi,
∵z+zi=1+5i,
∴a+bi+ai+bi2=(a-b)+(a+b)i=1+5i,
∴$\left\{\begin{array}{l}{a-b=1}\\{a+b=5}\end{array}\right.$,解得a=3,b=2,
∴z=3+2i.
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)及運(yùn)算法則等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知A,B為拋物線E:y2=2px(p>0)上異于頂點(diǎn)O的兩點(diǎn),△AOB是等邊三角形,其面積為48$\sqrt{3}$,則p的值為(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象如圖所示,則下列有關(guān)f(x)性質(zhì)的描述正確的是(  )
A.φ=$\frac{2π}{3}$B.x=$\frac{7π}{12}$+kπ,k∈Z為其所有對(duì)稱軸
C.[$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z為其減區(qū)間D.f(x)向左移$\frac{π}{12}$可變?yōu)榕己瘮?shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A.$16-\frac{2π}{3}$B.$8-\frac{4π}{3}$C.$16-\frac{4π}{3}$D.$16(1-\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x∈N|($\frac{1}{2}$)x≤1},B={x|x2-2x-8≤0},則A∩B=(  )
A.{x|0≤x≤4}B.{0,1,2,3}C.{0,1,2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對(duì)于定義在[0,+∞)上的函數(shù)f(x),如果同時(shí)滿足下列三條:
①對(duì)任意的x∈[0,+∞),總有f(x)≥0;
②若x1≥0,x2≥0,都有f(x1+x2)≥f(x1)+f(x2)成立;
③若0≤x1<x2<1,則$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1.
則稱函數(shù)f(x)為超級(jí)囧函數(shù),則下列是超級(jí)囧函數(shù)的為(3).
(1)f(x)=sinx
(2)g(x)=$\frac{1}{4}{x^2}$(x∈[0,1])
(3)h(x)=2x-1;
(4)p(x)=ln(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+mx+mlnx.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)m>0時(shí),若對(duì)于區(qū)間[1,2]上的任意兩個(gè)實(shí)數(shù)x1,x2,且x1<x2,都有|f(x1)-f(x2)|<x22-x12成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線y=x-1過橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn),且橢圓C的離心率為$\frac{1}{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)以橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短軸為直徑作圓,若點(diǎn)M是第一象限內(nèi)圓周上一點(diǎn),過點(diǎn)M作圓的切線交橢圓C于P,Q兩點(diǎn),橢圓C的右焦點(diǎn)為F2,試判斷△PF2Q的周長(zhǎng)是否為定值,若是求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)是原點(diǎn),以x軸為對(duì)稱軸,且經(jīng)過點(diǎn)P(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)點(diǎn)A,B在拋物線C上,直線PA,PB分別與y軸交于點(diǎn)M,N,|PM|=|PN|.求直線AB的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案