7.函數(shù)y=$\sqrt{3-2x-{x^2}}$的定義域是(  )
A.[-3,1]B.[-1,3]C.[1,3]D.(-3,1]

分析 要使函數(shù)y=$\sqrt{3-2x-{x^2}}$有意義,則3-2x-x2≥0,求解一元二次不等式則可得答案.

解答 解:要使函數(shù)y=$\sqrt{3-2x-{x^2}}$有意義,
則3-2x-x2≥0,
解得-3≤x≤1.
∴函數(shù)y=$\sqrt{3-2x-{x^2}}$的定義域是:[-3,1].
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的定義域及其求法,考查了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知m、n∈R+,且m+n=2,則mn有最大值1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若直線(xiàn)2x+y+a=0與圓x2+y2+2x-4y=0相切,則a的值為( 。
A.±$\sqrt{5}$B.±5C.3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在棱錐P-ABC中,側(cè)棱PA、PB、PC兩兩垂直,Q為底面△ABC內(nèi)一點(diǎn),若點(diǎn)Q到三個(gè)側(cè)面的距離分別為2、2、2$\sqrt{2}$,則以線(xiàn)段PQ為直徑的球的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列各選項(xiàng)中可以組成集合的是( 。
A.與2非常接近的全體實(shí)數(shù)
B.黃驊中學(xué)高一年級(jí)學(xué)習(xí)成績(jī)好的所有學(xué)生
C.2016里約奧運(yùn)會(huì)得金牌的所有中國(guó)運(yùn)動(dòng)員
D.與無(wú)理數(shù)π相差很小的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)f(x)的定義域?yàn)閧x|0≤x≤1},則f(-x)的定義域?yàn)閧x|-1≤x≤0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.通過(guò)隨機(jī)詢(xún)問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
總計(jì)
愛(ài)好402060
不愛(ài)好203050
總計(jì)6050110
附:Kκ=2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
則有( 。┌盐照f(shuō)明大學(xué)生“愛(ài)好該項(xiàng)運(yùn)動(dòng)是否與性別有關(guān)”.
A.95%B.97.5%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=ax2+bx+1(a≠0,b∈R),若f(-1)=0,且對(duì)任意實(shí)數(shù)x(x∈R)不等式f(x)≥0恒成立.
(1)求實(shí)數(shù)a、b的值;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)在區(qū)間A上,對(duì)?a,b,c∈A,f(a),f(b),f(c)為一個(gè)三角形的三邊長(zhǎng),則稱(chēng)函數(shù)f(x)為“三角形函數(shù)”.已知函數(shù)f(x)=xlnx+m在區(qū)間[$\frac{1}{e^2}$,e]上是“三角形函數(shù)”,則實(shí)數(shù)m的取值范圍為( 。
A.$(\frac{1}{e},\frac{{{e^2}+2}}{e})$B.$(\frac{2}{e},+∞)$C.$(\frac{1}{e},+∞)$D.$(\frac{{{e^2}+2}}{e},+∞)$

查看答案和解析>>

同步練習(xí)冊(cè)答案