已知A={x||x-2|>1},數(shù)學(xué)公式,求A∩B、(?UA)∪B.

解:∵A={x||x-2|>1}={x|x>3或x<1},
={x|-1<x≤4},
∴A∩B={x|-1<x<1或3<x≤4}
(?UA)∪B={x|1≤x≤3}∪{x|-1<x≤4}={x|-1<x≤4}.
分析:先由含絕對值不等式的解法和分式不等式的解法求出集合A和B,再求A∩B、(?UA)∪B.
點評:本題考查集合的交、并、補的混合運算,解題時要注意含絕對值不等式和分式不等式的解法的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x<3},B={x|-1<x<5},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
x-5
2
<-1},若?AB={x|x+4<-x},則集合B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x<1},B={x|-1<x<2},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域為數(shù)學(xué)公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案