已知在△ABC中,角A,B,C所對的邊分別是a,b,c,∠C=
3

(1)若a,b,c依次成等差數(shù)列,且公差為2.求c的值;
(2)若c=
3
,求a+b的取值范圍.
考點:等差數(shù)列的性質(zhì),解三角形
專題:綜合題,三角函數(shù)的求值,解三角形
分析:(1)利用余弦定理,求c的值;
(2)利用正弦定理,將邊化為角,再求a+b的取值范圍.
解答: 解:(1)由題得a=c-4,b=c-2,由余弦定理得c2=a2+b2-2abcosC
c2=(c-4)2+(c-2)2-2(c-4)(c-2)cos
3

解得c=7或c=2,
又c>4,∴c=7.
(2)∵c=2,C=
3
,∴
c
sinC
=
3
3
2
=2

a+b=2(sinA+sinB)=4sin
A+B
2
cos
A-B
2
=4sin
π
6
cos(
π
6
-B)=2cos(
π
6
-B)

B∈(0,
π
3
)
,
π
6
-B∈(-
π
6
,
π
6
),cos(
π
6
-B)∈(
3
2
,1]

a+b∈(
3
,2]
點評:此題考查了正弦、余弦定理,等差數(shù)列的性質(zhì),以及三角恒等變換,熟練掌握定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=k(x-1)ex+x2
(Ⅰ)當時k=-
1
e
,求函數(shù)f(x)在點(1,1)處的切線方程;
(Ⅱ)若在y軸的左側(cè),函數(shù)g(x)=x2+(k+2)x的圖象恒在f(x)的導函數(shù)f′(x)圖象的上方,求k的取值范圍;
(Ⅲ)當k≤-l時,求函數(shù)f(x)在[k,1]上的最小值m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明下列等式:
(1)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)=sin2α
(2)
tan(2π-α)•sin(-2π-α)•cos(6π-α)
sin(α+
2
)•cos(α+
2
)
=-tanα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=-
2
3
,其前n項和Sn滿足an=Sn+
1
Sn
+2(n≥2),計算S1,S2,S3,S4,猜想Sn的表達式,并用數(shù)學歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x+lnx+
4
x
+1(自然對數(shù)的底數(shù)e=2.71828…).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)在[
1
e
,e]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+2(x≤-1)
x2(-1<x<2)
2x(x≥2)

(1)求f(-4)、f(3)、f(1)的值;
(2)若f(a)=
1
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是橢圓C上任一點,點P到直線l1:x=-2的距離為d1,到點F(-1,0)的距離為d2,且
d
 
2
d1
=
2
2
.直線l與橢圓C交于不同兩點A、B(A,B都在x軸上方),且∠OFA+∠OFB=180°.
(1)求橢圓C的方程;
(2)當A為橢圓與y軸正半軸的交點時,求直線l方程;
(3)對于動直線l,是否存在一個定點,無論∠OFA如何變化,直線l總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}各項均為正數(shù),其n項和為Sn,且滿足2anSn-a
 
2
n
=1.
(1)求證:數(shù)列{
S
2
n
}為等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=
2
4S
4
n
-1
,求數(shù)列{bn}的前n項和Tn,并求使Tn
1
6
(m2-3m)
對所有的n∈N*都成立的最大正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-x-2>0},B={x||x-a|≤1},若A∩B=∅,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案