【題目】已知函數(shù), 處取得極值,且,曲線處的切線與直線垂直.

(Ⅰ)求的解析式;

(Ⅱ)證明關(guān)于的方程至多只有兩個(gè)實(shí)數(shù)根(其中的導(dǎo)函數(shù), 是自然對(duì)數(shù)的底數(shù)).

【答案】(Ⅰ)(Ⅱ)見(jiàn)解析.

【解析】試題分析:先求根據(jù)韋達(dá)定理及列出關(guān)于 的方程組,進(jìn)而可得結(jié)果;(圓方程等價(jià)于,令研究函數(shù) 的單調(diào)性,討論兩種情況分別證明即可.

試題解析:(Ⅰ) ,因?yàn)?/span>處取得極值,

所以是方程的兩個(gè)根,則, ,

,則,所以.

由已知曲線處的切線與直線垂直,所以可得,

,由此可得解得

所以

(Ⅱ)對(duì)于,

(1)當(dāng)時(shí),得,方程無(wú)實(shí)數(shù)根;

(2)當(dāng)時(shí),得,令,

,

當(dāng)時(shí), ;

當(dāng)時(shí), ;當(dāng)時(shí),

的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,

函數(shù)處分別取得極小值和極大值.

,

對(duì)于,由于恒成立,

是與軸有兩個(gè)交點(diǎn)、開(kāi)口向上的拋物線,

所以曲線軸有且只有兩個(gè)交點(diǎn),從而無(wú)最大值,

時(shí) ,直線與曲線至多有兩個(gè)交點(diǎn);

,直線與曲線只有一個(gè)交點(diǎn);

綜上所述,無(wú)論取何實(shí)數(shù),方程至多只有兩實(shí)數(shù)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形中, , ,沿對(duì)角線折起,使點(diǎn)在平面上的射影落在上.

(1)求證:平面平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=﹣x3
B.y=
C.y=x
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢(shì)如下圖所示,3月至7月房?jī)r(jià)上漲過(guò)快,政府從8月采取宏觀調(diào)控措施,10月份開(kāi)始房?jī)r(jià)得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(jià)(萬(wàn)元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求關(guān)于的回歸方程;

(2)政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測(cè)第12月份該市新建住宅的銷售均價(jià).

參考數(shù)據(jù): , , ;

回歸方程中斜率和截距的最小二乘法估計(jì)公示分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與拋物線共焦點(diǎn),拋物線上的點(diǎn)My軸的距離等于,且橢圓與拋物線的交點(diǎn)Q滿足

(I)求拋物線的方程和橢圓的方程;

(II)過(guò)拋物線上的點(diǎn)作拋物線的切線交橢圓于、 兩點(diǎn),設(shè)線段AB的中點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù);
(1)求函數(shù)f(x)的周期以及單調(diào)遞增區(qū)間;
(2)在給出的直角坐標(biāo)系中,請(qǐng)用五點(diǎn)作圖法畫(huà)出f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式=a1a4﹣a2a3; 函數(shù)g(θ)=(其中0≤θ≤).
(1)證明:函數(shù)f(x)在(0,+∞)上也是增函數(shù);
(2)若函數(shù)g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,﹣),(0,)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫(xiě)出C的方程;
(2)若 , 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式:
(1)|x﹣2|+|2x﹣3|<4;
(2) ≤x.

查看答案和解析>>

同步練習(xí)冊(cè)答案