【題目】為迎接2022年北京冬季奧運(yùn)會(huì), 某校開(kāi)設(shè)了冰球選修課,12名學(xué)生被分成甲、乙兩組進(jìn)行訓(xùn)練.他們的身高(單位:cm)如下圖所示:
設(shè)兩組隊(duì)員身高平均數(shù)依次為,,方差依次為,,則下列關(guān)系式中完全正確的是( )
A. =, =B. <,>
C. <,=D. <,<
【答案】C
【解析】
由莖葉圖,分別求出兩組數(shù)據(jù)的平均數(shù)和方差,由此能求出結(jié)果.
解:由莖葉圖,得:
(174+175+176+177+178+179)=176.5,
[(174﹣176.5)2+(175﹣176.5)2+(176﹣176.5)2+(177﹣176.5)2+(178﹣176.5)2+(179﹣176.5)2]=,
(176+177+178+179+180+181)=178.5,
[(176﹣178.5)2+(177﹣178.5)2+(178﹣178.5)2+(179﹣178.5)2+(180﹣178.5)2+(181﹣178.5)2]=,.
∴<,=.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若 , ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)滿足.
(Ⅰ)當(dāng)時(shí),解不等式;
(Ⅱ)若關(guān)于x的方程的解集中有且只有一個(gè)元素,求a的值;
(Ⅲ)設(shè),若對(duì),函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò)1,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)某士兵遠(yuǎn)程射擊一個(gè)易爆目標(biāo),射擊一次擊中目標(biāo)的概率為,三次射中目標(biāo)或連續(xù)兩次射中目標(biāo),該目標(biāo)爆炸,停止射擊,否則就一直獨(dú)立地射擊至子彈用完.現(xiàn)有5發(fā)子彈,設(shè)耗用子彈數(shù)為隨機(jī)變量X.
(1)若該士兵射擊兩次,求至少射中一次目標(biāo)的概率;
(2)求隨機(jī)變量X的概率分布與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為利于分層教學(xué),某學(xué)校根據(jù)學(xué)生的情況分成了A,B,C三類,經(jīng)過(guò)一段時(shí)間的學(xué)習(xí)后在三類學(xué)生中分別隨機(jī)抽取了1個(gè)學(xué)生的5次考試成緞,其統(tǒng)計(jì)表如下:
A類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 145 | 83 | 95 | 72 | 110 |
,;
B類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 85 | 93 | 90 | 76 | 101 |
,;
C類
第x次 | 1 | 2 | 3 | 4 | 4 |
分?jǐn)?shù)y(滿足150) | 85 | 92 | 101 | 100 | 112 |
,;
(1)經(jīng)計(jì)算己知A,B的相關(guān)系數(shù)分別為,.,請(qǐng)計(jì)算出C學(xué)生的的相關(guān)系數(shù),并通過(guò)數(shù)據(jù)的分析回答抽到的哪類學(xué)生學(xué)習(xí)成績(jī)最穩(wěn)定;(結(jié)果保留兩位有效數(shù)字,越大認(rèn)為成績(jī)?cè)椒(wěn)定)
(2)利用(1)中成績(jī)最穩(wěn)定的學(xué)生的樣本數(shù)據(jù),已知線性回歸直線方程為,利用線性回歸直線方程預(yù)測(cè)該生第十次的成績(jī).
附相關(guān)系數(shù),線性回歸直線方程,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知表1是某年部分日期的天安門(mén)廣場(chǎng)升旗時(shí)刻表.
表1:某年部分日期的天安門(mén)廣場(chǎng)升旗時(shí)刻表
將表1中的升旗時(shí)刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如:可化為).
(Ⅰ)請(qǐng)補(bǔ)充完成下面的頻率分布表及頻率分布直方圖;
|
(Ⅱ)若甲學(xué)校從上表日期中隨機(jī)選擇一天觀看升旗.試估計(jì)甲學(xué)校觀看升旗的時(shí)刻早于6:00的概率;
(Ⅲ)若甲,乙兩個(gè)學(xué)校各自從表1中五月、六月的日期中隨機(jī)選擇一天觀看升旗, 求兩校觀看升旗的時(shí)刻均不早于5:00的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面幾何中,通常將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.最小覆蓋圓滿足以下性質(zhì):①線段的最小覆蓋圓就是以為直徑的圓;②銳角的最小覆蓋圓就是其外接圓.已知曲線:,,,,為曲線上不同的四點(diǎn).
(Ⅰ)求實(shí)數(shù)的值及的最小覆蓋圓的方程;
(Ⅱ)求四邊形的最小覆蓋圓的方程;
(Ⅲ)求曲線的最小覆蓋圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,平面平面,,,分別為的中點(diǎn).
(1)證明:平面平面;
(2)求三棱錐的體積;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為,且平面.
(1)證明:;
(2)若,,,試畫(huà)出二面角的平面角,并求它的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com