【題目】某校高三課外興趣小組為了了解高三同學高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關;
(3)在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
附:
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【答案】(1)b=30,; (2)有; (3)
【解析】
(1)由分層抽樣的概念可得抽得女生50人,男生75人,即可得解;
(2)計算出后,比較與6.635的大小即可得解;
(3)設5名男生分別為A、B、C、D、E,2名女生分別為a、b,列出沒接受采訪的兩人的所有情況,找到?jīng)]接受采訪的兩人恰為一男一女的情況,即可得解.
(1)由題意得抽得女生人,男生人,
所以,.
(2)因為,
所以有99%的把握認為觀看2018年足球世界杯比賽與性別有關.
(3)設5名男生分別為A、B、C、D、E,2名女生分別為a、b,
由題意可知從7人中選出5人接受電視臺采訪,相當于從7人中挑選2人不接受采訪,所有可能的結(jié)果有
,共21種,
其中恰為一男一女的包括,
,共10種.
因此所求概率為
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C的方程是:(,),則下列說法正確的是( )
A.當時,雙曲線的離心率為
B.過雙曲線C右焦點F的直線與雙曲線只有一個交點的直線有且只有2條;
C.過雙曲線C右焦點F的直線與雙曲線右支交于M,N兩點,則此時線段長度有最小值;
D.雙曲線C與雙曲線:(,)漸近線相同.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點Pn(an,bn)滿足an+1=an·bn+1,bn+1=(n∈N*),且點P1的坐標為(1,-1).
(1)求過點P1,P2的直線l的方程;
(2)試用數(shù)學歸納法證明:對于n∈N*,點Pn都在(1)中的直線l上
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:
①直線與直線的斜率乘積為;
②軸;
③以為直徑的圓與拋物線準線相切.
其中,所有正確判斷的序號是( )
A.①②③B.①②C.①③D.②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程選講
在平面直角坐標系中,以原點為極點,以軸非負半軸為極軸建立極坐標系, 已知曲線的極坐標方程為,直線的極坐標方程為.
(Ⅰ)寫出曲線和直線的直角坐標方程;
(Ⅱ)設直線過點與曲線交于不同兩點,的中點為,與的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某企業(yè)生產(chǎn)某種產(chǎn)品的年固定成本為萬元,且每生產(chǎn)噸該產(chǎn)品需另投入萬元,現(xiàn)假設該企業(yè)在一年內(nèi)共生產(chǎn)該產(chǎn)品噸并全部銷售完.每噸的銷售收入為萬元,且
(1)求該企業(yè)年總利潤(萬元)關于年產(chǎn)量(噸)的函數(shù)關系式:
(2)當年產(chǎn)量為多少噸時,該企業(yè)在這一產(chǎn)品的生產(chǎn)中所獲年總利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了比較兩位運動員甲和乙的打靶成績,在相同條件下測得各打靶次所得環(huán)數(shù)(已按從小到大排列)如下:
甲的環(huán)數(shù):
乙的環(huán)數(shù):
(1)完成莖葉圖,并分別計算兩組數(shù)據(jù)的平均數(shù)及方差;
(2)(i)根據(jù)(1)的結(jié)果,分析兩人的成績;
(ii)如果你是教練,請你作出決策:根據(jù)對手實力的強弱分析應該派兩人中的哪一位上場比賽.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com