5.函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-3x+2})$的遞減區(qū)間為(2,+∞).

分析 先求出函數(shù)的定義域,然后利用復(fù)合函數(shù)的單調(diào)性確定函數(shù)f(x)的單調(diào)遞減區(qū)間.

解答 解:由x2-3x+2>0,得x<1或x>2.
令t=x2-3x+2,則原函數(shù)化為y=$lo{g}_{\frac{1}{2}}t$,
內(nèi)函數(shù)t=x2-3x+2的增區(qū)間為(2,+∞),外函數(shù)y=$lo{g}_{\frac{1}{2}}t$為減函數(shù),
∴函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-3x+2})$的遞減區(qū)間為:(2,+∞).
故答案為:(2,+∞).

點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對(duì)應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=1-|x|+$\frac{2}{1+5{x}^{2}}$,若f(x-2)>f(3),則x的取值范圍是(-1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合A={(x,y)|y=x2+mx+2},B={(x,y)|y=x+1},如果A∩B≠∅,則實(shí)數(shù)m的取值范圍為{m|m≥3或m≤-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$f(x)=ln({x+1})-\frac{2}{x}$有一零點(diǎn)所在的區(qū)間為(n0,n0+1)(${n_0}∈{N^*}$),則n0=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}({-x}),x<0\\ x-2,x≥0\end{array}\right.$,若函數(shù)g(x)=|f(x)|-a有四個(gè)不同零點(diǎn)x1,x2,x3,x4,且x1<x2<x3<x4,則${x_1}{x_2}{a^2}-\frac{{{x_3}+{x_4}}}{2}a+2017$的最小值為2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知A=(-∞,0],B=(a,+∞),若A∪B=R,則a的取值范圍是a≤0..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.平面直角坐標(biāo)系中,給出點(diǎn)A(1,0),B(4,0),若直線(xiàn)x+my-1=0存在點(diǎn)P,使得|PA|=2|PB|,則實(shí)數(shù)m的取值范圍是m≥$\sqrt{3}$或m≤-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.定義在R上的偶函數(shù)y=f(x),當(dāng)x≥0時(shí),f(x)=lg(x2-3x+3),則f(x)在R上的零點(diǎn)個(gè)數(shù)為4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.方程x2-2x+3=0的解集是∅.

查看答案和解析>>

同步練習(xí)冊(cè)答案