設(shè)定義在上的函數(shù)對(duì)任意實(shí)數(shù)滿足,且,則的值為(    )

A.-2             B.          C.0             D.4

 

【答案】

B

【解析】

試題分析:令,則有,故得

,,則有,

, 故選.

考點(diǎn):函數(shù)的值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c;則稱f(x)為“平底型”函數(shù).
(1)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),(k∈R,k≠0)對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)
是“平底型”函數(shù),求m和n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(06年廣東卷)(12分)

A是由定義在上且滿足如下條件的函數(shù)組成的集合:①對(duì)任意,都有 ; ②存在常數(shù),使得對(duì)任意的,都有

(Ⅰ)設(shè),證明:

  (Ⅱ)  設(shè),如果存在,使得,那么這樣的是唯一的;

  (Ⅲ) 設(shè),任取,令證明:給定正整數(shù)k,對(duì)任意的正整數(shù)p,成立不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

于定義在D上的函數(shù),若同時(shí)滿足

①存在閉區(qū)間,使得任取,都有是常數(shù));

②對(duì)于D內(nèi)任意,當(dāng)時(shí)總有;

則稱為“平底型”函數(shù).

(1)判斷 ,是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;Ks5u

(2)設(shè)是(1)中的“平底型”函數(shù),若,(

對(duì)一切恒成立,求實(shí)數(shù)的范圍;

(3)若是“平底型”函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年上海市十一校高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說(shuō)明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案