【題目】在鈍角△ABC中,角A,B,C所對的邊分別為a,b,c且b=atanB. (Ⅰ)求A﹣B的值;
(Ⅱ)求cos2B﹣sinA的取值范圍.
【答案】解:(Ⅰ)由b=atanB得:bcosB=asinB 又由正弦定理得,sinBcosB=sinAsinB,
所以cosB=sinA
又△ABC是鈍角三角形,所以 .
(Ⅱ)由(Ⅰ)知
又由 ,所以 ,
所以 ,
又由于函數(shù) 在 上單調(diào)遞增,
所以cos2B﹣sinA的取值范圍為 .
【解析】(Ⅰ)由b=atanB得:bcosB=asinB,再利用正弦定理即可得出.(Ⅱ)由(Ⅰ)知 ,利用二次函數(shù)的單調(diào)性、三角函數(shù)的單調(diào)性與值域即可得出.
【考點(diǎn)精析】掌握正弦定理的定義是解答本題的根本,需要知道正弦定理:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鄉(xiāng)大學(xué)生攜手回鄉(xiāng)創(chuàng)業(yè),他們引進(jìn)某種果樹在家鄉(xiāng)進(jìn)行種植試驗(yàn).他們分別在五種不同的試驗(yàn)田中種植了這種果樹100株并記錄了五種不同的試驗(yàn)田中果樹的死亡數(shù),得到如下數(shù)據(jù):
試驗(yàn)田 | 試驗(yàn)田1 | 試驗(yàn)田2 | 試驗(yàn)田3 | 試驗(yàn)田4 | 試驗(yàn)田5 |
死亡數(shù) | 23 | 32 | 24 | 29 | 17 |
(Ⅰ)求這五種不同的試驗(yàn)田中果樹的平均死亡數(shù);
(Ⅱ)從五種不同的試驗(yàn)田中隨機(jī)取兩種試驗(yàn)田的果樹死亡數(shù),記為x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)視為同一事件,并求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的環(huán)保社團(tuán)參照國家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):
空氣質(zhì)量指數(shù) | (0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] |
空氣質(zhì)量等級 | 1級優(yōu) | 2級良 | 3級輕度污染 | 4級中度污染 | 5級重度污染 | 6級嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在2016年100天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算2017年(以365天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);
(Ⅱ)該校2017年6月7、8、9日將作為高考考場,若這三天中某天出現(xiàn)5級重度污染,需要凈化空氣費(fèi)用10000元,出現(xiàn)6級嚴(yán)重污染,需要凈化空氣費(fèi)用20000元,記這三天凈化空氣總費(fèi)用為X元,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,
已知圓和圓.
(1)若直線過點(diǎn),且被圓截得的弦長為,
求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:
存在過點(diǎn)P的無窮多對互相垂直的直線和,
它們分別與圓和圓相交,且直線被圓
截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,,.
(1)求直線與平面所成角的正弦值.
(2)在棱上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對任意的,滿足,其中,為常數(shù).
(1)若的圖象在處的切線經(jīng)過點(diǎn),求的值;
(2)已知,求證;
(3)當(dāng)存在三個不同的零點(diǎn)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為了解該商場某商品近5年日銷售量(單位:件),隨機(jī)抽取近5年50天的銷售量,統(tǒng)計結(jié)果如下:
日銷售量 | 100 | 150 |
天數(shù) | 30 | 20 |
頻率 |
若將上表中頻率視為概率,且每天的銷售量相互獨(dú)立.則在這5年中:
(1)求5天中恰好有3天銷售量為150件的概率(用分式表示);
(2)已知每件該商品的利潤為20元,用X表示該商品某兩天銷售的利潤和(單位: 元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正整數(shù)數(shù)列中,由1開始按如下規(guī)則依次取它的項(xiàng):第一次取1;第二次取2個連續(xù)偶數(shù);第三次取3個連續(xù)奇數(shù);第四次取4個連續(xù)偶數(shù);第五次取5個連續(xù)奇數(shù);……按此規(guī)律取下去,得到一個子數(shù)列,,……則在這個子數(shù)列中,第個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正四面體D﹣ABC(所有棱長均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點(diǎn),AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )
A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com