用秦九韶算法求多項式f(x)=2x5-3x2+4x4-2x3+x,當(dāng)x=2時的值.
考點:秦九韶算法
專題:算法和程序框圖
分析:所給的多項式寫成關(guān)于x的一次函數(shù)的形式,依次寫出,得到最后結(jié)果,從里到外進(jìn)行運算,得到要求的值.
解答: 解:∵f(x)=2x5-3x2+4x4-2x3+x
=((((2x+4)x-2)x-3)x+1}x  (5分)
∴當(dāng)x=2時,
v0=2
v1=2×2+4=8
v2=8×2-2=14
v3=14×2-3=25
v4=25×2+1=51
v5=51×2+0=102
(10分)
∴當(dāng)x=2時,多項式的值為102.  (12分)
點評:本題考查秦九韶算法,本題解題的關(guān)鍵是對多項式進(jìn)行整理,得到符合條件的形式,不管是求計算結(jié)果還是求加法和減法的次數(shù)都可以.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinx,cosx),
b
=(cosφ,sinφ)(|φ|<
π
2
).函數(shù)f(x)=
a
b
 且f(
π
3
-x)=f(x).
(1)求f(x)的解析式及單調(diào)遞增區(qū)間:
(2)將f(x)的圖象向右平移
π
3
單位得g(x)的圖象,若g(x)+1≤ax+cosx在x∈[0,
π
4
]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的解析式.
(1)已知f(1-x)=2x2-x+1,求f(x);
(2)已知f(x-
1
x
)=x2+
1
x2
,求f(x);
(3)已知一次函數(shù)f(x)滿足f(f(x))=4x-1,求f(x);
(4)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在[0,2π]內(nèi),函數(shù)y=sinx的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=e2x在點(0,1)處的切線的斜率是( 。
A、e2B、e
C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,2)的直線l與x軸和y軸的交點分別為A(a,0);B(0,b)(其中a>0,b>0),分別求滿足下列條件的直線l的方程.
(1)a=b;             
(2)三角形AOB的面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊與單位圓的交點坐標(biāo)為(-
1
2
,
3
2
),則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

五名同學(xué)在“愛心捐助”活動中,捐款數(shù)額為8,10,10,4,6(單位:元),這組數(shù)據(jù)的中位數(shù)是( 。
A、10B、9C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
log
1
2
sinx-1
的增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案